Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
- URL: http://arxiv.org/abs/2507.02628v1
- Date: Thu, 03 Jul 2025 13:54:50 GMT
- Title: Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
- Authors: Irena Girshovitz, Atai Ambus, Moni Shahar, Ran Gilad-Bachrach,
- Abstract summary: EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors.<n> Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research.<n>We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns.
- Score: 5.681039620785591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The use of Electronic Health Records (EHRs) for epidemiological studies and artificial intelligence (AI) training is increasing rapidly. The reliability of the results depends on the accuracy and completeness of EHR data. However, EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors, as they are primarily collected for clinical and billing purposes. Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research. Methods: We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns. We demonstrate our approach using the Medical Data Pecking Tool (MDPT), which consists of two main components: (1) an automated test generator that uses large language models and grounding techniques to create a test suite from data and study descriptions, and (2) a data testing framework that executes these tests, reporting potential errors and coverage. Results: We evaluated MDPT on three datasets: All of Us (AoU), MIMIC-III, and SyntheticMass, generating 55-73 tests per cohort across four conditions. These tests correctly identified 20-43 non-aligned or non-conforming data issues. We present a detailed analysis of the LLM-generated test suites in terms of reference grounding and value accuracy. Conclusion: Our approach incorporates external medical knowledge to enable context-sensitive data quality testing as part of the data analysis workflow to improve the validity of its outcomes. Our approach tackles these challenges from a quality assurance perspective, laying the foundation for further development such as additional data modalities and improved grounding methods.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Integrated Analysis for Electronic Health Records with Structured and Sporadic Missingness [11.56234410514708]
We propose a novel imputation method tailored for Electronic Health Records (EHRs) with structured and sporadic missingness.<n>By addressing these gaps, our method provides a practical solution for integrated analysis, enhancing data utility and advancing the understanding of population health.
arXiv Detail & Related papers (2025-06-10T19:59:49Z) - Leveraging Generative AI Through Prompt Engineering and Rigorous Validation to Create Comprehensive Synthetic Datasets for AI Training in Healthcare [0.0]
The GPT-4 API was employed to generate high-quality synthetic datasets aimed at overcoming this limitation.<n>The generated data encompassed a comprehensive array of patient admission information, including healthcare provider details, hospital departments, wards, bed assignments, patient demographics, emergency contacts, vital signs, immunizations, allergies, medical histories, appointments, hospital visits, laboratory tests, diagnoses, treatment plans, medications, clinical notes, visit logs, discharge summaries, and referrals.
arXiv Detail & Related papers (2025-04-29T16:37:34Z) - Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework [8.017827642932746]
Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets is a modality-agnostic dataset auditing framework.<n>Our method examines the relationship between task-level annotations and data properties including patient attributes.<n>G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods.
arXiv Detail & Related papers (2025-03-13T02:16:48Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [54.98321887435557]
This paper presents a suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design.<n>We provide basic validation methods for each task to ensure the datasets' usability and reliability.<n>We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - The METRIC-framework for assessing data quality for trustworthy AI in
medicine: a systematic review [0.0]
Development of trustworthy AI is especially important in medicine.
We focus on the importance of data quality (training/test) in deep learning (DL)
We propose the METRIC-framework, a specialised data quality framework for medical training data.
arXiv Detail & Related papers (2024-02-21T09:15:46Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.