Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework
- URL: http://arxiv.org/abs/2503.09969v2
- Date: Tue, 03 Jun 2025 20:18:36 GMT
- Title: Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework
- Authors: Nathan Drenkow, Mitchell Pavlak, Keith Harrigian, Ayah Zirikly, Adarsh Subbaswamy, Mohammad Mehdi Farhangi, Nicholas Petrick, Mathias Unberath,
- Abstract summary: Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets is a modality-agnostic dataset auditing framework.<n>Our method examines the relationship between task-level annotations and data properties including patient attributes.<n>G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods.
- Score: 8.017827642932746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is now firmly at the center of evidence-based medicine. Despite many success stories that edge the path of AI's rise in healthcare, there are comparably many reports of significant shortcomings and unexpected behavior of AI in deployment. A major reason for these limitations is AI's reliance on association-based learning, where non-representative machine learning datasets can amplify latent bias during training and/or hide it during testing. To unlock new tools capable of foreseeing and preventing such AI bias issues, we present G-AUDIT. Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets is a modality-agnostic dataset auditing framework that allows for generating targeted hypotheses about sources of bias in training or testing data. Our method examines the relationship between task-level annotations (commonly referred to as ``labels'') and data properties including patient attributes (e.g., age, sex) and environment/acquisition characteristics (e.g., clinical site, imaging protocols). G-AUDIT quantifies the extent to which the observed data attributes pose a risk for shortcut learning, or in the case of testing data, might hide predictions made based on spurious associations. We demonstrate the broad applicability of our method by analyzing large-scale medical datasets for three distinct modalities and machine learning tasks: skin lesion classification in images, stigmatizing language classification in Electronic Health Records (EHR), and mortality prediction for ICU tabular data. In each setting, G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods, underscoring its practical value in exposing dataset-level risks and supporting the downstream development of reliable AI systems.
Related papers
- Predictive Representativity: Uncovering Racial Bias in AI-based Skin Cancer Detection [0.0]
This paper introduces the concept of Predictive Representativity (PR)<n>PR shifts the focus from the composition of the data set to outcomes-level equity.<n>Our analysis reveals substantial performance disparities by skin phototype.
arXiv Detail & Related papers (2025-07-10T22:21:06Z) - AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis [16.21270312974956]
We introduce a novel statistical framework to evaluate the dependency of medical imaging ML models on sensitive attributes, such as demographics.
We present a practical algorithm that combines conditional latent diffusion models with statistical hypothesis testing to identify and quantify such biases.
arXiv Detail & Related papers (2025-04-28T09:28:25Z) - Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset [0.47517735516852333]
We leverage a linked EHR dataset to characterize urinary tract infections (UTIs)<n>We introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines.<n>Our findings reveal differences in clinical and demographic predictors across risk groups.
arXiv Detail & Related papers (2024-11-26T18:10:51Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - SUDO: a framework for evaluating clinical artificial intelligence systems without ground-truth annotations [3.7525007896336944]
We introduce SUDO, a framework for evaluating AI systems without ground-truth annotations.
We show that SUDO can be a reliable proxy for model performance and thus identify unreliable predictions.
arXiv Detail & Related papers (2024-01-02T18:12:03Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in
Healthcare Datasets [32.25265709333831]
We generate a data-centric, model-agnostic, task-agnostic approach to evaluate dataset bias by investigating the relationship between how easily different groups are learned at small sample sizes (AEquity)
We then apply a systematic analysis of AEq values across subpopulations to identify and manifestations of racial bias in two known cases in healthcare.
AEq is a novel and broadly applicable metric that can be applied to advance equity by diagnosing and remediating bias in healthcare datasets.
arXiv Detail & Related papers (2023-11-06T17:08:41Z) - Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models [8.420252576694583]
We present a first technique for the rigorous, quantitative screening of medical image datasets.
Our method decomposes the risks associated with dataset attributes in terms of their detectability and utility.
Using our method, we show our screening method reliably identifies nearly imperceptible bias-inducing artifacts.
arXiv Detail & Related papers (2023-04-06T16:50:15Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Recommendations on test datasets for evaluating AI solutions in
pathology [2.001521933638504]
AI solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis.
Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval.
A committee of various stakeholders, including commercial AI developers, pathologists, and researchers, discussed key aspects and conducted extensive literature reviews on test datasets in pathology.
arXiv Detail & Related papers (2022-04-21T14:52:47Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - TRAPDOOR: Repurposing backdoors to detect dataset bias in machine
learning-based genomic analysis [15.483078145498085]
Under-representation of groups in datasets can lead to inaccurate predictions for certain groups, which can exacerbate systemic discrimination issues.
We propose TRAPDOOR, a methodology for identification of biased datasets by repurposing a technique that has been mostly proposed for nefarious purposes: Neural network backdoors.
Using a real-world cancer dataset, we analyze the dataset with the bias that already existed towards white individuals and also introduced biases in datasets artificially.
arXiv Detail & Related papers (2021-08-14T17:02:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.