Hey AI, Generate Me a Hardware Code! Agentic AI-based Hardware Design & Verification
- URL: http://arxiv.org/abs/2507.02660v1
- Date: Thu, 03 Jul 2025 14:20:57 GMT
- Title: Hey AI, Generate Me a Hardware Code! Agentic AI-based Hardware Design & Verification
- Authors: Deepak Narayan Gadde, Keerthan Kopparam Radhakrishna, Vaisakh Naduvodi Viswambharan, Aman Kumar, Djones Lettnin, Wolfgang Kunz, Sebastian Simon,
- Abstract summary: This paper presents an agentic AI-based approach to hardware design verification.<n>Agentic AI-based approach empowers AI agents, in collaboration with Humain-in-the-Loop (HITL) intervention, to engage in a more dynamic, iterative, and self-reflective process.<n>This methodology is evaluated on five open-source designs, achieving over 95% coverage with reduced verification time.
- Score: 2.8236458753814233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern Integrated Circuits (ICs) are becoming increasingly complex, and so is their development process. Hardware design verification entails a methodical and disciplined approach to the planning, development, execution, and sign-off of functionally correct hardware designs. This tedious process requires significant effort and time to ensure a bug-free tape-out. The field of Natural Language Processing has undergone a significant transformation with the advent of Large Language Models (LLMs). These powerful models, often referred to as Generative AI (GenAI), have revolutionized how machines understand and generate human language, enabling unprecedented advancements in a wide array of applications, including hardware design verification. This paper presents an agentic AI-based approach to hardware design verification, which empowers AI agents, in collaboration with Humain-in-the-Loop (HITL) intervention, to engage in a more dynamic, iterative, and self-reflective process, ultimately performing end-to-end hardware design and verification. This methodology is evaluated on five open-source designs, achieving over 95% coverage with reduced verification time while demonstrating superior performance, adaptability, and configurability.
Related papers
- A Multi-Agent Generative AI Framework for IC Module-Level Verification Automation [5.6001391902185205]
generative AI-assisted chip design is attracting widespread attention from academia and industry.<n>This paper proposes an innovative Multi-Agent Verification Framework (MAVF) aimed at addressing the limitations of current single-LLM approaches in complex verification tasks.<n>Results show that MAVF significantly outperforms traditional manual methods and single-dialogue generative AI approaches in verification document parsing and generation, as well as automated testbench generation.
arXiv Detail & Related papers (2025-07-29T11:17:47Z) - Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications.<n>PDD is an iterative, five-step process that consists of: i.e. deriving device behavior from design parameters, ii. simulating device performance, iv. fabricating the optimal device, and v. measuring device performance.<n>PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes.<n>In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD
arXiv Detail & Related papers (2025-06-24T23:32:54Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
This paper explores the application of structured prompt patterns to minimize the number of interactions required for satisfactory AI-assisted code generation.<n>We analyzed seven distinct prompt patterns to evaluate their effectiveness in reducing back-and-forth communication between developers and AI.
arXiv Detail & Related papers (2025-06-02T12:43:08Z) - Verbal Process Supervision Elicits Better Coding Agents [0.9558392439655016]
This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS)<n>CURA achieves a 3.65% improvement over baseline models on challenging benchmarks like BigCodeBench.
arXiv Detail & Related papers (2025-03-24T09:48:59Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries.
The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator.
The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes.
arXiv Detail & Related papers (2024-08-23T13:52:47Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
arXiv Detail & Related papers (2024-01-30T19:27:16Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
Deep neural networks (DNNs) have led to large strides in various Artificial Intelligence (AI) inference tasks, such as object and speech recognition.
deploying such AI models across commodity devices faces significant challenges.
We present techniques for achieving real-time performance following a cross-stack approach.
arXiv Detail & Related papers (2021-06-21T11:23:12Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.