論文の概要: Large Language Model Agent for Modular Task Execution in Drug Discovery
- arxiv url: http://arxiv.org/abs/2507.02925v1
- Date: Thu, 26 Jun 2025 00:19:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.528038
- Title: Large Language Model Agent for Modular Task Execution in Drug Discovery
- Title(参考訳): 薬物発見におけるモジュールタスク実行のための大規模言語モデルエージェント
- Authors: Janghoon Ock, Radheesh Sharma Meda, Srivathsan Badrinarayanan, Neha S. Aluru, Achuth Chandrasekhar, Amir Barati Farimani,
- Abstract要約: 本稿では,大規模言語モデル(LLM)をベースとしたモジュール型フレームワークを提案する。
LLM推論とドメイン固有のツールを組み合わせることで、バイオメディカルデータ検索、ドメイン固有の質問応答、分子生成、特性予測、特性認識分子精製、および3Dタンパク質リガンド構造生成を行う。
- 参考スコア(独自算出の注目度): 7.1616715247845955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a modular framework powered by large language models (LLMs) that automates and streamlines key tasks across the early-stage computational drug discovery pipeline. By combining LLM reasoning with domain-specific tools, the framework performs biomedical data retrieval, domain-specific question answering, molecular generation, property prediction, property-aware molecular refinement, and 3D protein-ligand structure generation. In a case study targeting BCL-2 in lymphocytic leukemia, the agent autonomously retrieved relevant biomolecular information-including FASTA sequences, SMILES representations, and literature-and answered mechanistic questions with improved contextual accuracy over standard LLMs. It then generated chemically diverse seed molecules and predicted 67 ADMET-related properties, which guided iterative molecular refinement. Across two refinement rounds, the number of molecules with QED > 0.6 increased from 34 to 55, and those passing at least four out of five empirical drug-likeness rules rose from 29 to 52, within a pool of 194 molecules. The framework also employed Boltz-2 to generate 3D protein-ligand complexes and provide rapid binding affinity estimates for candidate compounds. These results demonstrate that the approach effectively supports molecular screening, prioritization, and structure evaluation. Its modular design enables flexible integration of evolving tools and models, providing a scalable foundation for AI-assisted therapeutic discovery.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)をベースとしたモジュール型フレームワークを提案する。
LLM推論とドメイン固有のツールを組み合わせることで、バイオメディカルデータ検索、ドメイン固有の質問応答、分子生成、特性予測、特性認識分子精製、および3Dタンパク質リガンド構造生成を行う。
リンパ性白血病におけるBCL-2を標的としたケーススタディでは、FASTA配列、SMILES表現、および標準LLMよりも文脈精度が向上した文学および回答機械的疑問を含む関連生体分子情報を自律的に検索した。
その後、化学的に多様な種子分子を生成し、67個のADMET関連特性を予測し、反復的な分子精製を導いた。
2回の精製ラウンドで、QED > 0.6の分子数は34から55に増加し、5つのうち少なくとも4つを超える分子は194分子のプール内で29から52に増加した。
このフレームワークはまたボルツ-2を用いて3Dタンパク質-リガンド錯体を生成し、候補化合物に対する高速な結合親和性評価を提供する。
これらの結果から, 本手法は分子スクリーニング, 優先順位付け, 構造評価を効果的に支援できることが示唆された。
そのモジュールデザインは進化するツールやモデルの柔軟な統合を可能にし、AI支援治療発見のためのスケーラブルな基盤を提供する。
関連論文リスト
- MT-Mol:Multi Agent System with Tool-based Reasoning for Molecular Optimization [13.94416046565452]
大規模言語モデル(LLM)を用いた分子最適化のためのマルチエージェントフレームワークMT-Molを紹介する。
本システムには, 構造記述子, 電子的およびトポロジ的特徴, フラグメントベース機能群, 分子的表現, 諸化学的性質の5つの異なる領域に分類された総合RDKitツールが組み込まれている。
MT-Molは、分析エージェント、分子生成科学者、推論出力検証器、レビュアーエージェントとの相互作用を通じて、ツール整列および段階的に推論された分子を生成する。
論文 参考訳(メタデータ) (2025-05-27T07:27:30Z) - Improving Chemical Understanding of LLMs via SMILES Parsing [18.532188836688928]
CLEANMOLは、SMILES解析をクリーンで決定論的タスクのスイートに定式化する新しいフレームワークである。
適応的難易度スコアリングを伴う分子事前学習データセットを構築し,これらの課題に対してオープンソースのLCMを事前学習する。
以上の結果から,CLEANMOLは構造的理解を高めるだけでなく,Moll-Instructionsベンチマークのベースラインと競合する。
論文 参考訳(メタデータ) (2025-05-22T07:54:39Z) - BAPULM: Binding Affinity Prediction using Language Models [7.136205674624813]
本稿では,ProtT5-XL-U50およびMollFormerを介してタンパク質の化学潜伏表現を利用する,革新的な配列ベースフレームワークであるBAPULMを紹介する。
提案手法は,ベンチマーク1k2101, Test2016_290, CSAR-HiQ_36でそれぞれ0.925 $pm$0.043, 0.914 $pm$0.004, 0.8132 $pm$0.0001のシーケンシャルスコアリングパワー(R)値を達成した。
論文 参考訳(メタデータ) (2024-11-06T04:35:30Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
新規なウイルスタンパク質を標的とした新規な薬物様小分子を設計するためのエンド・ツー・エンドのフレームワークであるCogMolを提案する。
CogMolは、分子SMILES変分オートエンコーダ(VAE)の適応事前学習と、効率的なマルチ属性制御サンプリングスキームを組み合わせる。
CogMolは、高目標特異性と選択性を有する合成可能で低毒性な薬物様分子の多制約設計を扱う。
論文 参考訳(メタデータ) (2020-04-02T18:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。