論文の概要: AI Literacy and LLM Engagement in Higher Education: A Cross-National Quantitative Study
- arxiv url: http://arxiv.org/abs/2507.03020v2
- Date: Tue, 08 Jul 2025 05:25:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 12:20:17.789797
- Title: AI Literacy and LLM Engagement in Higher Education: A Cross-National Quantitative Study
- Title(参考訳): 高等教育におけるAIリテラシーとLLMエンゲージメント:全国横断的定量的研究
- Authors: Shahin Hossain, Shapla Khanam, Samaa Haniya, Nesma Ragab Nasr,
- Abstract要約: LLM(Large Language Models)は、情報へのアクセスを強化し、書き込みを改善し、学術的なパフォーマンスを向上させる。
過信、倫理的リスク、批判的思考に関する懸念が続いている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a cross-national quantitative analysis of how university students in the United States and Bangladesh interact with Large Language Models (LLMs). Based on an online survey of 318 students, results show that LLMs enhance access to information, improve writing, and boost academic performance. However, concerns about overreliance, ethical risks, and critical thinking persist. Guided by the AI Literacy Framework, Expectancy-Value Theory, and Biggs' 3P Model, the study finds that motivational beliefs and technical competencies shape LLM engagement. Significant correlations were found between LLM use and perceived literacy benefits (r = .59, p < .001) and optimism (r = .41, p < .001). ANOVA results showed more frequent use among U.S. students (F = 7.92, p = .005) and STEM majors (F = 18.11, p < .001). Findings support the development of ethical, inclusive, and pedagogically sound frameworks for integrating LLMs in higher education.
- Abstract(参考訳): 本研究では,米国とバングラデシュの大学生がLarge Language Models (LLMs) とどのように相互作用するかの国際的定量的分析を行った。
318名の学生を対象にオンライン調査を行った結果,LSMは情報へのアクセスを高め,文章の改善,学術的業績の向上を図っている。
しかし、過信、倫理的リスク、批判的思考に対する懸念は続いている。
AIリテラシーフレームワーク、期待値理論、そしてBiggsの3Pモデルによってガイドされたこの研究は、モチベーション的信念と技術的な能力がLLMの関与を形作ることを発見した。
LLMの使用とリテラシーの利点(r = .59, p < .001)と楽観主義(r = .41, p < .001)の間に有意な相関関係が認められた。
ANOVAの結果は、米国の学生(F = 7.92, p = .005)とSTEM専攻(F = 18.11, p < .001)の間で頻繁に使用されている。
発見は、高等教育におけるLLMの統合のための倫理的、包括的、教育的に健全な枠組みの開発を支援する。
関連論文リスト
- Enhanced Bloom's Educational Taxonomy for Fostering Information Literacy in the Era of Large Language Models [16.31527042425208]
本稿では,大規模言語モデル(LLM)を用いた学生の情報リテラシー(IL)の認識と評価を目的としたLLMによるブルーム教育分類法を提案する。
このフレームワークは、LLMを使用するために必要な認知能力に対応するILを、Exploration & ActionとCreation & Metacognitionの2つの異なるステージに分類する。
論文 参考訳(メタデータ) (2025-03-25T08:23:49Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
OpenAIのChatGPTのような大規模言語モデル(LLM)は、新しい教育の道を開いた。
学校制限にもかかわらず,中高生300人以上を対象に調査を行ったところ,学生の70%がLDMを利用していることがわかった。
我々は、対象特化モデル、パーソナライズドラーニング、AI教室など、このような問題に対処するいくつかのアイデアを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:19:34Z) - Whose ChatGPT? Unveiling Real-World Educational Inequalities Introduced by Large Language Models [3.005864877840858]
ChatGPTや他の類似のツールは、学習経験と成果を改善するために、大きな言語モデル(LLM)の可能性について、大きな興奮と実験的努力を喚起しました。
しかし、LLMが教育的価値に与える影響を体系的に調査する研究はほとんどない。
我々は2021年から2024年までの2391のコースで16,791人の大学生から1,140,328人の学術論文を米国内の公立の少数派機関で分析した。
言語学的に有利な学生と不利な学生の書き込み品質のギャップが狭まりつつあり, 学生全体の書き込み品質が徐々に向上していることがわかった。
論文 参考訳(メタデータ) (2024-10-29T17:35:46Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - LLaMA Beyond English: An Empirical Study on Language Capability Transfer [49.298360366468934]
我々は、言語生成の能力と指示を英語以外の言語に効果的に伝達する方法に焦点をあてる。
本稿では,語彙拡張や事前学習,トランスファーに対する指導指導などの重要な要因が与える影響について分析する。
C-Eval、MMLU、AGI-Eval、GAokao-Benchの4つの広く使われている標準テストベンチマークを採用しています。
論文 参考訳(メタデータ) (2024-01-02T06:29:02Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。