論文の概要: Optimas: Optimizing Compound AI Systems with Globally Aligned Local Rewards
- arxiv url: http://arxiv.org/abs/2507.03041v1
- Date: Thu, 03 Jul 2025 07:12:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.55172
- Title: Optimas: Optimizing Compound AI Systems with Globally Aligned Local Rewards
- Title(参考訳): Optimas: グローバルなローカルリワードによる複合AIシステムの最適化
- Authors: Shirley Wu, Parth Sarthi, Shiyu Zhao, Aaron Lee, Herumb Shandilya, Adrian Mladenic Grobelnik, Nurendra Choudhary, Eddie Huang, Karthik Subbian, Linjun Zhang, Diyi Yang, James Zou, Jure Leskovec,
- Abstract要約: 複合システムの効率的な最適化のための統一的なフレームワークであるOptimasを提案する。
各イテレーションにおいて、Optimasはローカルリワード関数(LRF)を効率よく適用し、各コンポーネントのローカル報酬を最大化しながら、この特性を維持する。
我々は,5つの実世界の化合物システムに対して広範な評価を行い,オプティマスが11.92%の平均的な改善によって強いベースラインを上回っていることを示す。
- 参考スコア(独自算出の注目度): 95.19837878559456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compound AI systems integrating multiple components, such as Large Language Models, specialized tools, and traditional machine learning models, are increasingly deployed to solve complex real-world tasks. However, optimizing compound systems remains challenging due to their non-differentiable structures and diverse configuration types across components, including prompts, hyperparameters, and model parameters. To address this challenge, we propose Optimas, a unified framework for effective optimization of compound systems. The core idea of Optimas is to maintain one Local Reward Function (LRF) per component, each satisfying a local-global alignment property, i.e., each component's local reward correlates with the global system performance. In each iteration, Optimas efficiently adapts the LRFs to maintain this property while simultaneously maximizing each component's local reward. This approach enables independent updates of heterogeneous configurations using the designated optimization method, while ensuring that local improvements consistently lead to performance gains. We present extensive evaluations across five real-world compound systems to demonstrate that Optimas outperforms strong baselines by an average improvement of 11.92%, offering a general and effective approach for improving compound systems. Our website is at https://optimas.stanford.edu.
- Abstract(参考訳): 大規模言語モデルや特殊なツール、従来の機械学習モデルといった複数のコンポーネントを統合する複合AIシステムは、複雑な現実世界のタスクを解決するためにますます多くデプロイされている。
しかしながら、複合システムの最適化は、その非微分可能な構造と、プロンプト、ハイパーパラメータ、モデルパラメータを含むコンポーネントにまたがる多様な構成タイプのため、依然として困難である。
この課題に対処するために,複合システムの効率的な最適化のための統一フレームワークであるOptimasを提案する。
Optimasの中核となる考え方は、各コンポーネントごとに1つのローカルリワード関数(LRF)を維持することである。
各イテレーションにおいて、Optimasは、各コンポーネントの局所的な報酬を最大化しながら、この特性を維持するためにLRFを効率的に適応させる。
このアプローチにより、指定された最適化手法を用いて異種構成を独立に更新し、局所的な改善が常に性能向上につながることを保証できる。
我々は,5つの実世界の化合物システムにおいて,オプティマスが11.92%の改善率で強いベースラインを上回り,化合物システムを改善するための汎用的で効果的なアプローチを提供することを実証するために,広範囲な評価を行った。
私たちのウェブサイトはhttps://optimas.stanford.eduにあります。
関連論文リスト
- LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - CURE: Simulation-Augmented Auto-Tuning in Robotics [15.943773140929856]
本稿では、因果的な設定オプションを識別するCUREを提案する。
CUREは、様々な構成オプションとロボットのパフォーマンス目標との間の因果関係を抽象化する。
物理ロボットとシミュレーションの両方で実験を行うことにより,CUREの有効性と伝達性を示す。
論文 参考訳(メタデータ) (2024-02-08T04:27:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - A Bayesian Optimization Framework for Finding Local Optima in Expensive
Multi-Modal Functions [18.570591025615453]
本稿では,高コストで評価可能なマルチモーダル目的関数に対する局所的・言語的ソリューションの集合を見つけるためのマルチモーダルBOフレームワークを開発する。
目的関数とその一階微分の結合分布を解析的に導出する。
本稿では、マルチモーダル設定によく知られたBO取得関数の変種を導入し、提案フレームワークの性能を実証する。
論文 参考訳(メタデータ) (2022-10-13T00:10:13Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
論文 参考訳(メタデータ) (2022-07-14T22:46:43Z) - Hierarchical Segment-based Optimization for SLAM [6.590648135605555]
本稿では,SLAMシステムのための階層的セグメントベース最適化手法を提案する。
まず,バックエンド最適化の効率向上に有効なトラジェクトリセグメンテーション手法を提案する。
そこで我々は,セグメンテーションのロバスト性を改善するためのバッファ機構を初めて提案する。
論文 参考訳(メタデータ) (2021-11-07T14:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。