Federated Learning for ICD Classification with Lightweight Models and Pretrained Embeddings
- URL: http://arxiv.org/abs/2507.03122v1
- Date: Thu, 03 Jul 2025 18:58:36 GMT
- Title: Federated Learning for ICD Classification with Lightweight Models and Pretrained Embeddings
- Authors: Binbin Xu, Gérard Dray,
- Abstract summary: This study investigates the feasibility and performance of federated learning for multi-label ICD code classification.<n>We propose a scalable pipeline combining frozen text embeddings with simple multilayer perceptron (MLP) classifiers.
- Score: 0.9668407688201359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the feasibility and performance of federated learning (FL) for multi-label ICD code classification using clinical notes from the MIMIC-IV dataset. Unlike previous approaches that rely on centralized training or fine-tuned large language models, we propose a lightweight and scalable pipeline combining frozen text embeddings with simple multilayer perceptron (MLP) classifiers. This design offers a privacy-preserving and deployment-efficient alternative for clinical NLP applications, particularly suited to distributed healthcare settings. Extensive experiments across both centralized and federated configurations were conducted, testing six publicly available embedding models from Massive Text Embedding Benchmark leaderboard and three MLP classifier architectures under two medical coding (ICD-9 and ICD-10). Additionally, ablation studies over ten random stratified splits assess performance stability. Results show that embedding quality substantially outweighs classifier complexity in determining predictive performance, and that federated learning can closely match centralized results in idealized conditions. While the models are orders of magnitude smaller than state-of-the-art architectures and achieved competitive micro and macro F1 scores, limitations remain including the lack of end-to-end training and the simplified FL assumptions. Nevertheless, this work demonstrates a viable way toward scalable, privacy-conscious medical coding systems and offers a step toward for future research into federated, domain-adaptive clinical AI.
Related papers
- Clinical NLP with Attention-Based Deep Learning for Multi-Disease Prediction [44.0876796031468]
This paper addresses the challenges posed by the unstructured nature and high-dimensional semantic complexity of electronic health record texts.<n>A deep learning method based on attention mechanisms is proposed to achieve unified modeling for information extraction and multi-label disease prediction.
arXiv Detail & Related papers (2025-07-02T07:45:22Z) - In-Context Learning for Label-Efficient Cancer Image Classification in Oncology [1.741659712094955]
In-context learning (ICL) is a pragmatic alternative to model retraining for domain-specific diagnostic tasks.<n>We evaluated the performance of four vision-language models (VLMs)-Paligemma, CLIP, ALIGN and GPT-4o.<n>ICL demonstrated competitive gains despite their smaller size, suggesting feasibility for deployment in computing constrained clinical environments.
arXiv Detail & Related papers (2025-05-08T20:49:01Z) - A Unified Benchmark of Federated Learning with Kolmogorov-Arnold Networks for Medical Imaging [3.536605202672355]
Kolmogorov-Arnold Networks (KAN) can effectively replace Federated Learning (FL)<n>KAN is a promising alternative for privacy-preserving medical imaging applications in distributed healthcare.
arXiv Detail & Related papers (2025-04-28T09:53:05Z) - Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.<n>We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.<n>Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis [28.767460351377462]
In the context of brain imaging analysis, modality incompleteness presents a significant challenge.<n>We propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis.<n>ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness.
arXiv Detail & Related papers (2025-02-14T09:33:59Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
We propose improved FDAM algorithms for detecting heterogeneous chest data.
A result of this paper is that the communication of the proposed algorithm is strongly independent of the number of machines and also independent of the accuracy level.
Experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets and on medical chest Xray images from different organizations.
arXiv Detail & Related papers (2021-02-09T04:05:19Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.