Discovering Algorithms with Computational Language Processing
- URL: http://arxiv.org/abs/2507.03190v2
- Date: Fri, 11 Jul 2025 16:55:14 GMT
- Title: Discovering Algorithms with Computational Language Processing
- Authors: Theo Bourdais, Abeynaya Gnanasekaran, Houman Owhadi, Tuhin Sahai,
- Abstract summary: We present a framework automating algorithm discovery by conceptualizing them as sequences of operations, represented as tokens.<n>These computational tokens are chained using a grammar, enabling the formation of increasingly sophisticated procedures.<n>Our ensemble Monte Carlo tree search (MCTS) guided by reinforcement learning (RL) explores token chaining and drives the creation of new tokens.
- Score: 0.7062238472483737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithms are the engine for reproducible problem-solving. We present a framework automating algorithm discovery by conceptualizing them as sequences of operations, represented as tokens. These computational tokens are chained using a grammar, enabling the formation of increasingly sophisticated procedures. Our ensemble Monte Carlo tree search (MCTS) guided by reinforcement learning (RL) explores token chaining and drives the creation of new tokens. This methodology rediscovers, improves, and generates new algorithms that substantially outperform existing methods for strongly NP-hard combinatorial optimization problems and foundational quantum computing approaches such as Grover's and Quantum Approximate Optimization Algorithm. Operating at the computational rather than code-generation level, our framework produces algorithms that can be tailored specifically to problem instances, not merely classes.
Related papers
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
This survey focuses on the benefits of scaling compute during inference.
We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation.
arXiv Detail & Related papers (2024-06-24T17:45:59Z) - Learning Arithmetic Formulas in the Presence of Noise: A General
Framework and Applications to Unsupervised Learning [4.10375234787249]
We present a framework for designing efficient algorithms for unsupervised learning problems.
Our framework is based on a meta algorithm that learns arithmetic circuits in the presence of noise.
arXiv Detail & Related papers (2023-11-13T12:26:25Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
We show that algorithm discovery in neural networks is sometimes more complex.
We show that even simple learning problems can admit a surprising diversity of solutions.
arXiv Detail & Related papers (2023-06-30T17:59:13Z) - Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
arXiv Detail & Related papers (2022-05-31T09:56:44Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.