AI-driven Web Application for Early Detection of Sudden Death Syndrome (SDS) in Soybean Leaves Using Hyperspectral Images and Genetic Algorithm
- URL: http://arxiv.org/abs/2507.03198v1
- Date: Thu, 03 Jul 2025 22:20:47 GMT
- Title: AI-driven Web Application for Early Detection of Sudden Death Syndrome (SDS) in Soybean Leaves Using Hyperspectral Images and Genetic Algorithm
- Authors: Pappu Kumar Yadav, Rishik Aggarwal, Supriya Paudel, Amee Parmar, Hasan Mirzakhaninafchi, Zain Ul Abideen Usmani, Dhe Yeong Tchalla, Shyam Solanki, Ravi Mural, Sachin Sharma, Thomas F. Burks, Jianwei Qin, Moon S. Kim,
- Abstract summary: Sudden Death Syndrome (SDS), caused by Fusarium virguliforme, poses a significant threat to soybean production.<n>This study presents an AI-driven web application for early detection of SDS on soybean leaves using hyperspectral imaging.
- Score: 0.6871062584292211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sudden Death Syndrome (SDS), caused by Fusarium virguliforme, poses a significant threat to soybean production. This study presents an AI-driven web application for early detection of SDS on soybean leaves using hyperspectral imaging, enabling diagnosis prior to visible symptom onset. Leaf samples from healthy and inoculated plants were scanned using a portable hyperspectral imaging system (398-1011 nm), and a Genetic Algorithm was employed to select five informative wavelengths (505.4, 563.7, 712.2, 812.9, and 908.4 nm) critical for discriminating infection status. These selected bands were fed into a lightweight Convolutional Neural Network (CNN) to extract spatial-spectral features, which were subsequently classified using ten classical machine learning models. Ensemble classifiers (Random Forest, AdaBoost), Linear SVM, and Neural Net achieved the highest accuracy (>98%) and minimal error across all folds, as confirmed by confusion matrices and cross-validation metrics. Poor performance by Gaussian Process and QDA highlighted their unsuitability for this dataset. The trained models were deployed within a web application that enables users to upload hyperspectral leaf images, visualize spectral profiles, and receive real-time classification results. This system supports rapid and accessible plant disease diagnostics, contributing to precision agriculture practices. Future work will expand the training dataset to encompass diverse genotypes, field conditions, and disease stages, and will extend the system for multiclass disease classification and broader crop applicability.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Building Flyweight FLIM-based CNNs with Adaptive Decoding for Object
Detection [40.97322222472642]
This work presents a method to build a Convolutional Neural Network (CNN) layer by layer for object detection from user-drawn markers.
We address the detection of Schistosomiasis mansoni eggs in microscopy images of fecal samples, and the detection of ships in satellite images.
Our CNN weighs thousands of times less than SOTA object detectors, being suitable for CPU execution and showing superior or equivalent performance to three methods in five measures.
arXiv Detail & Related papers (2023-06-26T16:48:20Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - A Novel CropdocNet for Automated Potato Late Blight Disease Detection
from the Unmanned Aerial Vehicle-based Hyperspectral Imagery [3.3283767441645478]
Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally.
Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias.
Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge.
arXiv Detail & Related papers (2021-07-28T11:18:48Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Leaf Image-based Plant Disease Identification using Color and Texture
Features [0.1657441317977376]
The accuracy on a self-collected dataset is 82.47% for disease identification and 91.40% for healthy and diseased classification.
This prototype system can be extended by adding more disease categories or targeting specific crop or disease categories.
arXiv Detail & Related papers (2021-02-08T20:32:56Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.