Dual-frequency Selected Knowledge Distillation with Statistical-based Sample Rectification for PolSAR Image Classification
- URL: http://arxiv.org/abs/2507.03268v1
- Date: Fri, 04 Jul 2025 02:56:28 GMT
- Title: Dual-frequency Selected Knowledge Distillation with Statistical-based Sample Rectification for PolSAR Image Classification
- Authors: Xinyue Xin, Ming Li, Yan Wu, Xiang Li, Peng Zhang, Dazhi Xu,
- Abstract summary: The effect of regional consistency on classification information learning and the rational use of dual-frequency data are two main difficulties for dual-frequency collaborative classification.<n>A knowledge distillation network with statistical-based sample rectification (SKDNet-SSR) is proposed in this article.
- Score: 11.844199868924505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The collaborative classification of dual-frequency PolSAR images is a meaningful but also challenging research. The effect of regional consistency on classification information learning and the rational use of dual-frequency data are two main difficulties for dual-frequency collaborative classification. To tackle these problems, a selected knowledge distillation network with statistical-based sample rectification (SKDNet-SSR) is proposed in this article. First, in addition to applying CNN and ViT as local and global feature extractors, a statistical-based dynamic sample rectification (SDSR) module is designed to avoid the impact of poor regional consistency on spatial information learning process. Specifically, based on the fact that the PolSAR covariance matrix conforms to the complex Wishart distribution, SDSR first dynamically evaluates the sample purity, and then performs pixel selection and pixel generation to remove noisy pixels, thereby avoiding the feature interaction between informative pixels and noisy pixels and improving the classification feature extraction process. Next, a dual-frequency gate-selected distillation (DGSD) module is constructed to emphasize the advantages of different frequency bands and perform complementary learning on dual-frequency data. It uses the dominant single-frequency branch on each sample as teacher model to train the dual-frequency student model, enabling the student model to learn the optimal results and realizing complementary utilization of dual-frequency data on different terrain objects. Comprehensive experiments on four measured dual-frequency PolSAR data demonstrate that the proposed SKDNet-SSR outperforms other related methods.
Related papers
- AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
arXiv Detail & Related papers (2025-08-07T07:47:16Z) - Attention based Dual-Branch Complex Feature Fusion Network for
Hyperspectral Image Classification [1.3249509346606658]
The proposed model is evaluated on the Pavia University and Salinas datasets.
Results show that the proposed model outperforms state-of-the-art methods in terms of overall accuracy, average accuracy, and Kappa.
arXiv Detail & Related papers (2023-11-02T22:31:24Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
arXiv Detail & Related papers (2023-10-14T11:03:04Z) - Noisy-ArcMix: Additive Noisy Angular Margin Loss Combined With Mixup
Anomalous Sound Detection [5.1308092683559225]
Unsupervised anomalous sound detection (ASD) aims to identify anomalous sounds by learning the features of normal operational sounds and sensing their deviations.
Recent approaches have focused on the self-supervised task utilizing the classification of normal data, and advanced models have shown that securing representation space for anomalous data is important.
We propose a training technique aimed at ensuring intra-class compactness and increasing the angle gap between normal and abnormal samples.
arXiv Detail & Related papers (2023-10-10T07:04:36Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
Face presentation attack detection (PAD) is attracting a lot of attention and playing a key role in securing face recognition systems.
We propose a dual-stream convolution neural networks (CNNs) framework to deal with unseen scenarios.
We successfully prove the design of our proposed PAD solution in a step-wise ablation study.
arXiv Detail & Related papers (2021-09-16T13:06:43Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
A robust unsupervised approach is proposed for small area change detection from synthetic aperture radar (SAR) images.
A multi-scale superpixel reconstruction method is developed to generate a difference image (DI)
A two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes.
arXiv Detail & Related papers (2020-11-22T12:50:08Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.