Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- URL: http://arxiv.org/abs/2507.03421v2
- Date: Thu, 10 Jul 2025 03:48:57 GMT
- Title: Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- Authors: Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang,
- Abstract summary: We propose a novel hybrid-view attention network for csPCa classification in 3D TRUS.<n>Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features.<n>Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy.
- Score: 4.662744612095781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.
Related papers
- Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images [3.0040661953201475]
We propose a novel hybrid attention-based network for lesion segmentation.<n>Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction.<n> Experiments on public datasets demonstrate that our method outperforms existing approaches.
arXiv Detail & Related papers (2025-06-19T20:32:54Z) - Hybrid Ensemble of Segmentation-Assisted Classification and GBDT for Skin Cancer Detection with Engineered Metadata and Synthetic Lesions from ISIC 2024 Non-Dermoscopic 3D-TBP Images [0.0]
This work presents a hybrid machine and deep learning-based approach for classifying skin lesions.<n>It comprises 401,059 cropped lesion images extracted from 3D Total Body Photography (TBP), emulating non-dermoscopic, smartphone-like conditions.<n>Predictions are fused with a gradient-boosted decision tree (GBDT) ensemble enriched by engineered features and patient-specific relational metrics.
arXiv Detail & Related papers (2025-06-03T22:00:03Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound [4.662744612095781]
We propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS.
The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE)
The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer.
arXiv Detail & Related papers (2024-06-20T07:45:01Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - MV-Swin-T: Mammogram Classification with Multi-view Swin Transformer [0.257133335028485]
We propose an innovative multi-view network based on transformers to address challenges in mammographic image classification.
Our approach introduces a novel shifted window-based dynamic attention block, facilitating the effective integration of multi-view information.
arXiv Detail & Related papers (2024-02-26T04:41:04Z) - Multi-modality transrectal ultrasound video classification for
identification of clinically significant prostate cancer [4.896561300855359]
We propose a framework for the classification of clinically significant prostate cancer (csPCa) from multi-modality TRUS videos.
The proposed framework is evaluated on an in-house dataset containing 512 TRUS videos.
arXiv Detail & Related papers (2024-02-14T07:06:30Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.