Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images
- URL: http://arxiv.org/abs/2506.16592v1
- Date: Thu, 19 Jun 2025 20:32:54 GMT
- Title: Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images
- Authors: Muhammad Azeem Aslam, Asim Naveed, Nisar Ahmed,
- Abstract summary: We propose a novel hybrid attention-based network for lesion segmentation.<n>Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction.<n> Experiments on public datasets demonstrate that our method outperforms existing approaches.
- Score: 3.0040661953201475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast ultrasound imaging is a valuable tool for early breast cancer detection, but automated tumor segmentation is challenging due to inherent noise, variations in scale of lesions, and fuzzy boundaries. To address these challenges, we propose a novel hybrid attention-based network for lesion segmentation. Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction with a multi-branch attention-enhanced decoder tailored for breast ultrasound images. The bottleneck incorporates Global Spatial Attention (GSA), Position Encoding (PE), and Scaled Dot-Product Attention (SDPA) to learn global context, spatial relationships, and relative positional features. The Spatial Feature Enhancement Block (SFEB) is embedded at skip connections to refine and enhance spatial features, enabling the network to focus more effectively on tumor regions. A hybrid loss function combining Binary Cross-Entropy (BCE) and Jaccard Index loss optimizes both pixel-level accuracy and region-level overlap metrics, enhancing robustness to class imbalance and irregular tumor shapes. Experiments on public datasets demonstrate that our method outperforms existing approaches, highlighting its potential to assist radiologists in early and accurate breast cancer diagnosis.
Related papers
- Attention-Enhanced Deep Learning Ensemble for Breast Density Classification in Mammography [0.0]
This study proposes an automated deep learning system for robust binary classification of breast density.<n>We implemented and compared four advanced convolutional neural networks.<n>We developed a novel Combined Focal Label Smoothing Loss function that integrates focal loss, label smoothing, and class-balanced weighting.
arXiv Detail & Related papers (2025-07-08T21:26:33Z) - PINN-EMFNet: PINN-based and Enhanced Multi-Scale Feature Fusion Network for Breast Ultrasound Images Segmentation [5.246262946799736]
This study proposes a PINN-based and Enhanced Multi-Scale Feature Fusion Network.<n>The network efficiently integrates and globally models multi-scale features through several structural innovations.<n>In the decoder section, a Multi-Scale Feature Refinement Decoder is employed, which, combined with a Multi-Scale Supervision Mechanism and a correction module, significantly improves segmentation accuracy and adaptability.
arXiv Detail & Related papers (2024-12-22T09:16:00Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - AResNet-ViT: A Hybrid CNN-Transformer Network for Benign and Malignant Breast Nodule Classification in Ultrasound Images [4.378181181541931]
A deep learning network that integrates CNN and Transformer is proposed for the classification of benign and malignant breast lesions in ultrasound images.
This network adopts a dual-branch architecture for local-global feature extraction, making full use of the advantages of CNN in extracting local features.
The global feature extraction branch utilizes the multi-head self-attention ViT network, which can capture the overall shape, boundary, and relationship with surrounding tissues.
arXiv Detail & Related papers (2024-07-27T18:18:45Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - ESKNet-An enhanced adaptive selection kernel convolution for breast
tumors segmentation [13.897849323634283]
Breast cancer is one of the common cancers that endanger the health of women globally.
CNNs have been proposed to segment breast tumors from ultrasound images.
We introduce an enhanced selective kernel convolution for breast tumor segmentation.
arXiv Detail & Related papers (2022-11-05T14:15:29Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.