論文の概要: Multi-Level Fusion Graph Neural Network for Molecule Property Prediction
- arxiv url: http://arxiv.org/abs/2507.03430v1
- Date: Fri, 04 Jul 2025 09:38:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.732118
- Title: Multi-Level Fusion Graph Neural Network for Molecule Property Prediction
- Title(参考訳): 分子特性予測のための多層核融合グラフニューラルネットワーク
- Authors: XiaYu Liu, Hou-biao Li, Yang Liu, Chao Fan,
- Abstract要約: グラフアテンションネットワークと新しいグラフ変換器を統合したマルチレベルフュージョングラフニューラルネットワーク(MLFGNN)を提案する。
複数のベンチマークデータセットの実験により、MLFGNNは、分類タスクと回帰タスクの両方において、最先端のメソッドを一貫して上回っていることが示された。
- 参考スコア(独自算出の注目度): 7.496721948662087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate molecular property prediction is essential in drug discovery and related fields. However, existing graph neural networks (GNNs) often struggle to simultaneously capture both local and global molecular structures. In this work, we propose a Multi-Level Fusion Graph Neural Network (MLFGNN) that integrates Graph Attention Networks and a novel Graph Transformer to jointly model local and global dependencies. In addition, we incorporate molecular fingerprints as a complementary modality and introduce a mechanism of interaction between attention to adaptively fuse information across representations. Extensive experiments on multiple benchmark datasets demonstrate that MLFGNN consistently outperforms state-of-the-art methods in both classification and regression tasks. Interpretability analysis further reveals that the model effectively captures task-relevant chemical patterns, supporting the usefulness of multi-level and multi-modal fusion in molecular representation learning.
- Abstract(参考訳): 正確な分子特性予測は、薬物発見とその関連分野において不可欠である。
しかし、既存のグラフニューラルネットワーク(GNN)は、しばしば局所的な分子構造とグローバルな分子構造の両方を同時に捉えるのに苦労する。
本研究では,グラフアテンションネットワークと新しいグラフトランスフォーマーを統合したマルチレベルフュージョングラフニューラルネットワーク(MLFGNN)を提案する。
さらに, 分子指紋を相補的モダリティとして組み込んで, 注意同士の相互作用のメカニズムを導入する。
複数のベンチマークデータセットに対する大規模な実験により、MLFGNNは、分類タスクと回帰タスクの両方において、最先端の手法を一貫して上回っていることが示された。
解釈可能性分析により,本モデルが課題関連化学パターンを効果的に捕捉し,分子表現学習における多レベル・多モード融合の有用性を裏付けることが明らかとなった。
関連論文リスト
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
我々は新しい分子グラフ表現学習法である textbf Structure similarity Motif GNN (MSSM-GNN) を紹介する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
我々はGNNを用いて分子グラフから特徴表現を学習し、追加の分子表現情報を組み込むことで特性予測の精度を高めることを目的としている。
論文 参考訳(メタデータ) (2024-09-13T06:59:10Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Molecular Joint Representation Learning via Multi-modal Information [11.493011069441188]
MMSGと呼ばれるSMILESと分子グラフのマルチモーダル情報を用いた分子共同表現学習フレームワークを提案する。
トランスフォーマーのアテンションバイアスとしてボンドレベルグラフ表現を導入することにより,自己注意機構を改善した。
さらに,グラフから集約された情報フローを強化するために,双方向メッセージ通信グラフニューラルネットワーク(BMC GNN)を提案する。
論文 参考訳(メタデータ) (2022-11-25T11:53:23Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。