Limits of Safe AI Deployment: Differentiating Oversight and Control
- URL: http://arxiv.org/abs/2507.03525v1
- Date: Fri, 04 Jul 2025 12:22:35 GMT
- Title: Limits of Safe AI Deployment: Differentiating Oversight and Control
- Authors: David Manheim, Aidan Homewood,
- Abstract summary: Oversight and control (collectively, supervision) are often invoked as key levers for ensuring that AI systems are accountable, reliable, and able to fulfill governance and management requirements.<n>The concepts are frequently conflated or insufficiently distinguished in academic and policy discourse, undermining efforts to design or evaluate systems that should remain under meaningful human supervision.<n>This paper proposes a theoretically-informed yet policy-grounded framework that articulates the conditions under which each mechanism is possible, where they fall short, and what is required to make them meaningful in practice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Oversight and control (collectively, supervision) are often invoked as key levers for ensuring that AI systems are accountable, reliable, and able to fulfill governance and management requirements. However, the concepts are frequently conflated or insufficiently distinguished in academic and policy discourse, undermining efforts to design or evaluate systems that should remain under meaningful human supervision. This paper undertakes a targeted critical review of literature on supervision outside of AI, along with a brief summary of past work on the topic related to AI. We then differentiate control as being ex-ante or real-time, and operational rather than policy or governance. In contrast, oversight is either a policy and governance function, or is ex-post. We suggest that control aims to prevent failures. In contrast, oversight often focuses on detection, remediation, or incentives for future prevention; all preventative oversight strategies nonetheless necessitate control. Building on this foundation, we make three contributions. First, we propose a theoretically-informed yet policy-grounded framework that articulates the conditions under which each mechanism is possible, where they fall short, and what is required to make them meaningful in practice. Second, we outline how supervision methods should be documented and integrated into risk management, and drawing on the Microsoft Responsible AI Maturity Model, we outline a maturity model for AI supervision. Third, we explicitly highlight some boundaries of these mechanisms, including where they apply, where they fail, and where it is clear that no existing methods suffice. This foregrounds the question of whether meaningful supervision is possible in a given deployment context, and can support regulators, auditors, and practitioners in identifying both present limitations and the need for new conceptual and technical advances.
Related papers
- Out of Control -- Why Alignment Needs Formal Control Theory (and an Alignment Control Stack) [0.6526824510982799]
This position paper argues that formal optimal control theory should be central to AI alignment research.<n>It offers a distinct perspective from prevailing AI safety and security approaches.
arXiv Detail & Related papers (2025-06-21T22:45:19Z) - Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor [83.99510317617694]
We argue that a broader conception of what rigorous AI research and practice should entail is needed.<n>We aim to provide useful language and a framework for much-needed dialogue about the AI community's work.
arXiv Detail & Related papers (2025-06-17T15:44:41Z) - Explainable AI Systems Must Be Contestable: Here's How to Make It Happen [2.5875936082584623]
This paper presents the first rigorous formal definition of contestability in explainable AI.<n>We introduce a modular framework of by-design and post-hoc mechanisms spanning human-centered interfaces, technical processes, and organizational architectures.<n>Our work equips practitioners with the tools to embed genuine recourse and accountability into AI systems.
arXiv Detail & Related papers (2025-06-02T13:32:05Z) - Watermarking Without Standards Is Not AI Governance [46.71493672772134]
We argue that current implementations risk serving as symbolic compliance rather than delivering effective oversight.<n>We propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms.
arXiv Detail & Related papers (2025-05-27T18:10:04Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
We develop a comprehensive framework designed to regulate AI technologies deployed in high-stakes domains such as defense, finance, healthcare, and education.<n>Our approach combines rigorous technical analysis, quantitative risk assessment, and normative evaluation to expose systemic vulnerabilities.
arXiv Detail & Related papers (2025-03-09T03:11:32Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
We argue that adapting existing processes for AI security reporting is doomed to fail due to fundamental shortcomings for the distinctive characteristics of AI systems.<n>Based on our proposal to address these shortcomings, we discuss an approach to AI security reporting and how the new AI paradigm, AI agents, will further reinforce the need for specialized AI security incident reporting advancements.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - The Artificial Intelligence Act: critical overview [0.0]
This article provides a critical overview of the recently approved Artificial Intelligence Act.
It starts by presenting the main structure, objectives, and approach of Regulation (EU) 2024/1689.
The text concludes that even if the overall framework can be deemed adequate and balanced, the approach is so complex that it risks defeating its own purpose.
arXiv Detail & Related papers (2024-08-30T21:38:02Z) - Open Problems in Technical AI Governance [102.19067750759471]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.<n>This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Generative AI Needs Adaptive Governance [0.0]
generative AI challenges the notions of governance, trust, and human agency.
This paper argues that generative AI calls for adaptive governance.
We outline actors, roles, as well as both shared and actors-specific policy activities.
arXiv Detail & Related papers (2024-06-06T23:47:14Z) - Value Functions are Control Barrier Functions: Verification of Safe
Policies using Control Theory [46.85103495283037]
We propose a new approach to apply verification methods from control theory to learned value functions.
We formalize original theorems that establish links between value functions and control barrier functions.
Our work marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems.
arXiv Detail & Related papers (2023-06-06T21:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.