Simplifying Graph Kernels for Efficient
- URL: http://arxiv.org/abs/2507.03560v2
- Date: Wed, 16 Jul 2025 07:00:43 GMT
- Title: Simplifying Graph Kernels for Efficient
- Authors: Lin Wang, Shijie Wang, Sirui Huang, Qing Li,
- Abstract summary: We introduce a new perspective by designing the simplified graph kernel.<n>It replaces deep layer stacking with a streamlined $K$-step message aggregation process.<n>A second kernel draws from Gaussian Process theory to model infinite-width GNNs.
- Score: 17.940972681488123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While kernel methods and Graph Neural Networks offer complementary strengths, integrating the two has posed challenges in efficiency and scalability. The Graph Neural Tangent Kernel provides a theoretical bridge by interpreting GNNs through the lens of neural tangent kernels. However, its reliance on deep, stacked layers introduces repeated computations that hinder performance. In this work, we introduce a new perspective by designing the simplified graph kernel, which replaces deep layer stacking with a streamlined $K$-step message aggregation process. This formulation avoids iterative layer-wise propagation altogether, leading to a more concise and computationally efficient framework without sacrificing the expressive power needed for graph tasks. Beyond this simplification, we propose another Simplified Graph Kernel, which draws from Gaussian Process theory to model infinite-width GNNs. Rather than simulating network depth, this kernel analytically computes kernel values based on the statistical behavior of nonlinear activations in the infinite limit. This eliminates the need for explicit architecture simulation, further reducing complexity. Our experiments on standard graph and node classification benchmarks show that our methods achieve competitive accuracy while reducing runtime. This makes them practical alternatives for learning on graphs at scale. Full implementation and reproducibility materials are provided at: https://anonymous.4open.science/r/SGNK-1CE4/.
Related papers
- Graph Coarsening via Supervised Granular-Ball for Scalable Graph Neural Network Training [30.354103857690777]
We employ granular-ball computing to effectively compress graph data.<n>We construct a coarsened graph network by iteratively splitting the graph into granular-balls based on a purity threshold.<n>Our algorithm can adaptively perform splitting without requiring a predefined coarsening rate.
arXiv Detail & Related papers (2024-12-18T13:36:03Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
Graph similarity computation (GSC) is a learning-based prediction task using Graph Neural Networks (GNNs)
We show that high-quality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg)
In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference.
arXiv Detail & Related papers (2024-06-21T07:37:28Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman
graph kernels [0.0]
Supervised learning has recently garnered significant attention in the field of computational physics.
Traditionally, such datasets consist of inputs given as meshes with a large number of nodes representing the problem geometry.
This means the supervised learning model must be able to handle large and sparse graphs with continuous node attributes.
arXiv Detail & Related papers (2024-02-06T09:35:40Z) - Fast Graph Condensation with Structure-based Neural Tangent Kernel [30.098666399404287]
We propose a novel dataset condensation framework (GC-SNTK) for graph-structured data.
A Structure-based Neural Tangent Kernel (SNTK) is developed to capture the topology of graph and serves as the kernel function in KRR paradigm.
Experiments demonstrate the effectiveness of our proposed model in accelerating graph condensation while maintaining high prediction performance.
arXiv Detail & Related papers (2023-10-17T07:25:59Z) - Graph Condensation for Inductive Node Representation Learning [59.76374128436873]
We propose mapping-aware graph condensation (MCond)
MCond integrates new nodes into the synthetic graph for inductive representation learning.
On the Reddit dataset, MCond achieves up to 121.5x inference speedup and 55.9x reduction in storage requirements.
arXiv Detail & Related papers (2023-07-29T12:11:14Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph Neural Network-Inspired Kernels for Gaussian Processes in
Semi-Supervised Learning [4.644263115284322]
Graph neural networks (GNNs) emerged recently as a promising class of models for graph-structured data in semi-supervised learning.
We introduce this inductive bias into GPs to improve their predictive performance for graph-structured data.
We show that these graph-based kernels lead to competitive classification and regression performance, as well as advantages in time, compared with the respective GNNs.
arXiv Detail & Related papers (2023-02-12T01:07:56Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.