論文の概要: Multi-Hop Reasoning for Question Answering with Hyperbolic Representations
- arxiv url: http://arxiv.org/abs/2507.03612v1
- Date: Fri, 04 Jul 2025 14:39:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.801835
- Title: Multi-Hop Reasoning for Question Answering with Hyperbolic Representations
- Title(参考訳): 双曲表現を用いた質問応答のためのマルチホップ推論
- Authors: Simon Welz, Lucie Flek, Akbar Karimi,
- Abstract要約: 多重ホップ推論における双曲空間とユークリッド空間の容量を比較する。
以上の結果から, 前者は多種多様なデータセット群において, 後者を一貫して上回っていることがわかった。
以上の結果から,データセットがより階層的な構造を示す場合,双曲表現の方がはるかに有利であることが示唆された。
- 参考スコア(独自算出の注目度): 7.312170216336085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperbolic representations are effective in modeling knowledge graph data which is prevalently used to facilitate multi-hop reasoning. However, a rigorous and detailed comparison of the two spaces for this task is lacking. In this paper, through a simple integration of hyperbolic representations with an encoder-decoder model, we perform a controlled and comprehensive set of experiments to compare the capacity of hyperbolic space versus Euclidean space in multi-hop reasoning. Our results show that the former consistently outperforms the latter across a diverse set of datasets. In addition, through an ablation study, we show that a learnable curvature initialized with the delta hyperbolicity of the utilized data yields superior results to random initializations. Furthermore, our findings suggest that hyperbolic representations can be significantly more advantageous when the datasets exhibit a more hierarchical structure.
- Abstract(参考訳): 双曲表現はマルチホップ推論を容易にするために広く使われている知識グラフデータのモデリングに有効である。
しかし、この問題に対する2つの空間の厳密かつ詳細な比較は欠如している。
本稿では,エンコーダ・デコーダモデルと双曲表現の単純な統合により,多脚推論における双曲空間とユークリッド空間の容量を比較するための,制御された総合的な実験を行う。
以上の結果から, 前者は多種多様なデータセット群において, 後者を一貫して上回っていることがわかった。
さらに、アブレーション実験により、使用済みデータのデルタ双曲性によって初期化された学習可能な曲率が、ランダムな初期化よりも優れた結果をもたらすことを示した。
さらに,データセットがより階層的な構造を示す場合,双曲表現の方がはるかに有利であることが示唆された。
関連論文リスト
- Discovering physical laws with parallel combinatorial tree search [57.05912962368898]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは10年以上にわたって精度と効率の重大なボトルネックに直面してきた。
制約データから汎用数学的表現を効率的に抽出する並列木探索(PCTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
双曲空間におけるデータセットの比較のための類似度スコアを提案する。
中心となる考え方は、与えられた集合をまたいだデータポイントを接続する双曲デラウネーグラフのエッジを数えることである。
人工および実生活の生物学的データに関する実証的研究を行い、HyperDGAが集合間の古典的距離の双曲バージョンより優れていることを示す。
論文 参考訳(メタデータ) (2024-04-12T17:14:58Z) - Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning [80.44084021062105]
本稿では,非方向エッジで連結された2つの潜在結合変数を特徴とする,多モーダルデータに対する新しい潜在部分因果モデルを提案する。
特定の統計的仮定の下では、多モーダル・コントラッシブ・ラーニングによって学習された表現が、自明な変換までの潜在結合変数に対応することを示す。
事前トレーニングされたCLIPモデルの実験は、非絡み合った表現を具現化し、数ショットの学習を可能にし、さまざまな現実世界のデータセットにわたるドメインの一般化を改善する。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Hyperbolic vs Euclidean Embeddings in Few-Shot Learning: Two Sides of
the Same Coin [49.12496652756007]
この結果から, 共通の双曲半径での双曲埋め込みが達成できることが示唆された。
従来のベンチマーク結果とは対照的に、ユークリッド計量を備えた固定半径エンコーダにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2023-09-18T14:51:46Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning [32.15608637930748]
2つのデシダラタの間にはトレードオフがあることを示し、同時に両方を達成できない可能性があることを示す。
我々は、理論データモデルを用いて分析を行い、より多様な事前学習データにより、異なるタスクに対してより多様な機能が得られる一方で、タスク固有の機能に重点を置いていないことを示す。
論文 参考訳(メタデータ) (2023-02-28T22:14:33Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - Unit Ball Model for Hierarchical Embeddings in Complex Hyperbolic Space [28.349200177632852]
双曲空間における階層構造を持つデータの表現を学習することは近年注目を集めている。
複素双曲空間の単位球モデルにおいてグラフ埋め込みを学ぶことを提案する。
論文 参考訳(メタデータ) (2021-05-09T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。