論文の概要: Unit Ball Model for Hierarchical Embeddings in Complex Hyperbolic Space
- arxiv url: http://arxiv.org/abs/2105.03966v1
- Date: Sun, 9 May 2021 16:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 04:59:25.666811
- Title: Unit Ball Model for Hierarchical Embeddings in Complex Hyperbolic Space
- Title(参考訳): 複素双曲空間における階層埋め込みの単位球モデル
- Authors: Huiru Xiao, Caigao Jiang, Yangqiu Song, James Zhang, Junwu Xiong
- Abstract要約: 双曲空間における階層構造を持つデータの表現を学習することは近年注目を集めている。
複素双曲空間の単位球モデルにおいてグラフ埋め込みを学ぶことを提案する。
- 参考スコア(独自算出の注目度): 28.349200177632852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the representation of data with hierarchical structures in the
hyperbolic space attracts increasing attention in recent years. Due to the
constant negative curvature, the hyperbolic space resembles tree metrics and
captures the tree-like properties of hierarchical graphs naturally, which
enables the hyperbolic embeddings to improve over traditional Euclidean models.
However, most graph data, even the data with hierarchical structures are not
trees and they usually do not ubiquitously match the constant curvature
property of the hyperbolic space. To address this limitation of hyperbolic
embeddings, we explore the complex hyperbolic space, which has the variable
negative curvature, for representation learning. Specifically, we propose to
learn the graph embeddings in the unit ball model of the complex hyperbolic
space. The unit ball model based embeddings have a more powerful representation
capacity to capture a variety of hierarchical graph structures. Through
experiments on synthetic and real-world data, we show that our approach
improves over the hyperbolic embedding models significantly.
- Abstract(参考訳): 双曲空間における階層構造を持つデータの表現を学ぶことは近年注目を集めている。
定数負の曲率のため、双曲空間は木メトリックスに似ており、階層グラフの木のような特性を自然に捉えるので、双曲埋め込みは従来のユークリッドモデルよりも改善することができる。
しかし、ほとんどのグラフデータ、階層構造を持つデータでさえ木ではなく、通常、双曲空間の定数曲率特性とユビキタスに一致しない。
このような双曲埋め込みの制限に対処するため、表現学習のための可変負曲率を持つ複素双曲空間を探索する。
具体的には,複素双曲空間の単位球モデルにおけるグラフ埋め込みを学習することを提案する。
単位球モデルに基づく埋め込みは、様々な階層グラフ構造をキャプチャするより強力な表現能力を持つ。
合成データおよび実世界データを用いた実験により, 双曲的埋め込みモデルに対して, 提案手法が大幅に改善することを示す。
関連論文リスト
- Shedding Light on Problems with Hyperbolic Graph Learning [2.3743504594834635]
グラフ機械学習文学における近年の論文は、双曲表現学習に多くのアプローチを導入している。
現在、双曲グラフ表現学習の分野を注意深く見ていく。
多くの論文では,アルゴリズム構築時にベースラインの厳密な提示に失敗し,ミスリード指標を用いてグラフデータセットの幾何を定量化している。
論文 参考訳(メタデータ) (2024-11-11T03:12:41Z) - Weighted Embeddings for Low-Dimensional Graph Representation [0.13499500088995461]
グラフを重み付き空間に埋め込むことを提案し、これは双曲幾何学と密接に関連しているが数学的には単純である。
重み付き埋め込みは、より少ない次元を使いながら、異質グラフに対する最先端のユークリッド埋め込みを著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-10-08T13:41:03Z) - Hyperbolic Heterogeneous Graph Attention Networks [3.0165549581582454]
以前の不均一グラフ埋め込みモデルは、低次元ユークリッド空間におけるベクトル表現として不均一グラフの要素を表す。
メタパスインスタンスを用いた双曲空間におけるベクトル表現を学習するハイパーボリック不均一グラフ注意ネットワーク(HHGAT)を提案する。
本研究では,HHGATがノード分類やクラスタリングタスクにおいて,最先端のヘテロジニアスグラフ埋め込みモデルより優れていることを示す3つの実世界のヘテロジニアスグラフデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-04-15T04:45:49Z) - Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
双曲空間におけるデータセットの比較のための類似度スコアを提案する。
中心となる考え方は、与えられた集合をまたいだデータポイントを接続する双曲デラウネーグラフのエッジを数えることである。
人工および実生活の生物学的データに関する実証的研究を行い、HyperDGAが集合間の古典的距離の双曲バージョンより優れていることを示す。
論文 参考訳(メタデータ) (2024-04-12T17:14:58Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
高品質なグラフ埋め込みを学習するための新しいコントラスト学習フレームワークを提案する。
具体的には、階層的なデータ不変情報を効果的にキャプチャするアライメントメトリックを設計する。
双曲空間において、木の性質に関連する葉と高さの均一性に対処する必要があることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:42Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
非ユークリッド計量空間へのグラフ埋め込みは、既存の有界よりもはるかに少ない訓練データを持つユークリッド空間におけるグラフ埋め込みよりも優れていることを示す。
我々の新しい上限は、既存の上限よりもかなり強く速く、最大で$R$と$O(frac1S)$に指数関数できる。
論文 参考訳(メタデータ) (2023-05-13T17:29:18Z) - Hyperbolic Graph Representation Learning: A Tutorial [39.25873010585029]
本チュートリアルは,このグラフ表現学習の新たな分野について,すべてのオーディエンスにアクセス可能なことを目的とした紹介を行う。
まず、グラフ表現学習といくつかの予備的および双曲幾何学について簡単な紹介を行う。
そして、それらを一般的なフレームワークに統合することで、現在の双曲グラフニューラルネットワークの技術詳細を包括的に再考する。
論文 参考訳(メタデータ) (2022-11-08T07:15:29Z) - Geometry Interaction Knowledge Graph Embeddings [153.69745042757066]
ユークリッド空間,双曲空間,超球空間間の空間構造を対話的に学習する幾何学的相互作用知識グラフ埋め込み(GIE)を提案する。
提案したGIEは、よりリッチなリレーショナル情報、モデルキー推論パターンをキャプチャし、エンティティ間の表現的セマンティックマッチングを可能にする。
論文 参考訳(メタデータ) (2022-06-24T08:33:43Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - Enhancing Hyperbolic Graph Embeddings via Contrastive Learning [7.901082408569372]
複数の双曲空間を通してノード表現を学習する新しいハイパーボリックグラフコントラスト学習(HGCL)フレームワークを提案する。
複数の実世界のデータセットに対する実験結果は、提案したHGCLの優位性を示している。
論文 参考訳(メタデータ) (2022-01-21T06:10:05Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。