Flow-Anchored Consistency Models
- URL: http://arxiv.org/abs/2507.03738v1
- Date: Fri, 04 Jul 2025 17:56:51 GMT
- Title: Flow-Anchored Consistency Models
- Authors: Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, Feng Wu,
- Abstract summary: Continuous-time Consistency Models (CMs) promise efficient few-step generation but face challenges with training instability.<n>We argue this instability stems from a fundamental conflict: by training a network to learn only a shortcut across a probability flow, the model loses its grasp on the instantaneous velocity field that defines the flow.<n>We introduce the Flow-Anchored Consistency Model (FACM), a simple but effective training strategy that uses a Flow Matching task as an anchor for the primary CM shortcut objective.
- Score: 32.04797599813587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous-time Consistency Models (CMs) promise efficient few-step generation but face significant challenges with training instability. We argue this instability stems from a fundamental conflict: by training a network to learn only a shortcut across a probability flow, the model loses its grasp on the instantaneous velocity field that defines the flow. Our solution is to explicitly anchor the model in the underlying flow during training. We introduce the Flow-Anchored Consistency Model (FACM), a simple but effective training strategy that uses a Flow Matching (FM) task as an anchor for the primary CM shortcut objective. This Flow-Anchoring approach requires no architectural modifications and is broadly compatible with standard model architectures. By distilling a pre-trained LightningDiT model, our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and 1.76 with just one step (NFE=1) on ImageNet 256x256, significantly outperforming previous methods. This provides a general and effective recipe for building high-performance, few-step generative models. Our code and pretrained models: https://github.com/ali-vilab/FACM.
Related papers
- Align Your Flow: Scaling Continuous-Time Flow Map Distillation [63.927438959502226]
Flow maps connect any two noise levels in a single step and remain effective across all step counts.<n>We extensively validate our flow map models, called Align Your Flow, on challenging image generation benchmarks.<n>We show text-to-image flow map models that outperform all existing non-adversarially trained few-step samplers in text-conditioned synthesis.
arXiv Detail & Related papers (2025-06-17T15:06:07Z) - Intention-Conditioned Flow Occupancy Models [69.79049994662591]
Large-scale pre-training has fundamentally changed how machine learning research is done today.<n>Applying this same framework to reinforcement learning is appealing because it offers compelling avenues for addressing core challenges in RL.<n>Recent advances in generative AI have provided new tools for modeling highly complex distributions.
arXiv Detail & Related papers (2025-06-10T15:27:46Z) - Mean Flows for One-step Generative Modeling [64.4997821467102]
We propose a principled and effective framework for one-step generative modeling.<n>A well-defined identity between average and instantaneous velocities is derived and used to guide neural network training.<n>Our method, termed the MeanFlow model, is self-contained and requires no pre-training, distillation, or curriculum learning.
arXiv Detail & Related papers (2025-05-19T17:59:42Z) - OFTSR: One-Step Flow for Image Super-Resolution with Tunable Fidelity-Realism Trade-offs [20.652907645817713]
OFTSR is a flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism.<n>We demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off.
arXiv Detail & Related papers (2024-12-12T17:14:58Z) - Truncated Consistency Models [57.50243901368328]
Training consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints.<n>We empirically find that this training paradigm limits the one-step generation performance of consistency models.<n>We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution.
arXiv Detail & Related papers (2024-10-18T22:38:08Z) - Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
arXiv Detail & Related papers (2024-10-09T17:43:38Z) - SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow [24.213303324584906]
We develop small, efficient one-step diffusion models based on the powerful rectified flow framework.
We train a one-step diffusion model with an FID of 5.02 and 15.7M parameters, outperforming the previous state-of-the-art one-step diffusion model.
arXiv Detail & Related papers (2024-07-17T16:38:45Z) - Improving the Training of Rectified Flows [14.652876697052156]
Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE.
One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error.
We propose improved techniques for training rectified flows, allowing them to compete with emphknowledge distillation methods even in the low NFE setting.
Our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two
arXiv Detail & Related papers (2024-05-30T17:56:04Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.