Skewed Score: A statistical framework to assess autograders
- URL: http://arxiv.org/abs/2507.03772v2
- Date: Wed, 09 Jul 2025 16:28:55 GMT
- Title: Skewed Score: A statistical framework to assess autograders
- Authors: Magda Dubois, Harry Coppock, Mario Giulianelli, Timo Flesch, Lennart Luettgau, Cozmin Ududec,
- Abstract summary: "LLM-as-a-judge", or autograders, offer a scalable alternative to human evaluation.<n>They have shown mixed reliability and may exhibit systematic biases.<n>We propose a statistical framework that enables researchers to simultaneously assess their autograders.
- Score: 2.9645858732618238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evaluation of large language model (LLM) outputs is increasingly performed by other LLMs, a setup commonly known as "LLM-as-a-judge", or autograders. While autograders offer a scalable alternative to human evaluation, they have shown mixed reliability and may exhibit systematic biases, depending on response type, scoring methodology, domain specificity, or other factors. Here we propose a statistical framework based on Bayesian generalised linear models (GLMs) that enables researchers to simultaneously assess their autograders while addressing their primary research questions (e.g., LLM evaluation). Our approach models evaluation outcomes (e.g., scores or pairwise preferences) as a function of properties of the grader (e.g., human vs. autograder) and the evaluated item (e.g., response length or the LLM that generated it), allowing for explicit quantification of scoring differences and potential biases within a unified framework. In addition, our method can be used to augment traditional metrics such as inter-rater agreement, by providing uncertainty estimates and clarifying sources of disagreement. Overall, this approach contributes to more robust and interpretable use of autograders in LLM evaluation, enabling both performance analysis and bias detection.
Related papers
- Evaluating Scoring Bias in LLM-as-a-Judge [8.751901240110888]
Large Language Models (LLMs) are employed as evaluators for complex tasks.<n>There are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments.
arXiv Detail & Related papers (2025-06-27T15:25:23Z) - Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
Large Language Models (LLMs) are increasingly being explored as evaluators in serious games.<n>This study investigates the reliability of five small-scale LLMs when assessing player responses in textitEn-join, a game that simulates decision-making within energy communities.<n>Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance.
arXiv Detail & Related papers (2025-04-13T10:46:13Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.<n> Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.<n>We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - Decoding Biases: Automated Methods and LLM Judges for Gender Bias Detection in Language Models [47.545382591646565]
Large Language Models (LLMs) have excelled at language understanding and generating human-level text.
LLMs are susceptible to adversarial attacks where malicious users prompt the model to generate undesirable text.
In this work, we train models to automatically create adversarial prompts to elicit biased responses from target LLMs.
arXiv Detail & Related papers (2024-08-07T17:11:34Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.<n>LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.<n>We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
We propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic.
For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models.
arXiv Detail & Related papers (2024-01-26T13:55:32Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.