Hong-Ou-Mandel interferometry with cavity QED-based single-photon sources: A Quantum Jump Analysis
- URL: http://arxiv.org/abs/2507.03803v1
- Date: Fri, 04 Jul 2025 20:46:07 GMT
- Title: Hong-Ou-Mandel interferometry with cavity QED-based single-photon sources: A Quantum Jump Analysis
- Authors: Lexi Dudones, Caden McCollum, Imran M. Mirza,
- Abstract summary: We present a quantum jump/trajectory analysis of the two-photon interference phenomenon in the context of the Hong-Ou-Mandel effect (HOME)<n>For single-photon sources, we consider two special cases: (1) two excited two-level atoms and (2) two atom-cavity setups with initially present single photons in both cavities.<n>Our results may have interesting applications in linear optics quantum computing as well as in protocols that test the indistinguishability of single-photon sources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a quantum jump/trajectory analysis of the two-photon interference phenomenon in the context of the Hong-Ou-Mandel effect (HOME). In particular, we consider the standard setup of HOME, which consists of two-photon sources firing single photons from the opposite sides of a 50/50 beam splitter and two perfect detectors placed at the output ports to record photodetection events. For single-photon sources, we consider two special cases: (1) two excited two-level atoms and (2) two atom-cavity setups with initially present single photons in both cavities. For both cases, we report analytic results as well as quantum jump-based Monte Carlo simulations to demonstrate the signatures of these single-photon sources on the HOME under different working conditions (for example, strong- and weak-coupling regimes of cavity quantum electrodynamics). Our results may have interesting applications in linear optics quantum computing as well as in protocols that test the indistinguishability of single-photon sources.
Related papers
- Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Strong single-photon to two-photon bundles emission in spin-1
Jaynes-Cummings model [3.230778132936486]
We study the nonclassical photon emission in a single spin-1 atom coupled to an optical cavity with constructing a spin-1 Jaynes-Cummings model.
The photon emission exhibit high-quality single photon and two-photon bundles properties with large photon numbers in the cavity and atom driven cases.
arXiv Detail & Related papers (2022-09-27T13:52:41Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities [0.0]
Single photons and single-photon pairs, inherently nonclassical in their nature, are fundamental elements of quantum sciences and technologies.
We propose to realize the nonclassical correlated deterministic photon pairs at the single-photon level for a single atom trapped in bimodal cavities.
arXiv Detail & Related papers (2022-04-15T08:05:26Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Heralded non-destructive quantum entangling gate with single-photon
sources [5.881327681338198]
We demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time.
Our results are an important step towards the development of photon-photon quantum logic gates.
arXiv Detail & Related papers (2020-10-28T06:50:23Z) - Mechanistic Understanding of Entanglement and Heralding in Cascade
Emitters [0.0]
We theoretically investigate the properties of quantum emitters (QEs) as a source of entangled photons with practical quantum properties.
Through the theoretical analysis, we characterize the properties of a cascade (biexciton) emitter.
We show how the purity and the degree of entanglement are connected to the production of heralded single photons.
arXiv Detail & Related papers (2020-09-29T13:43:51Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.