論文の概要: Do LLMs Overthink Basic Math Reasoning? Benchmarking the Accuracy-Efficiency Tradeoff in Language Models
- arxiv url: http://arxiv.org/abs/2507.04023v2
- Date: Wed, 08 Oct 2025 14:20:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 14:21:18.062166
- Title: Do LLMs Overthink Basic Math Reasoning? Benchmarking the Accuracy-Efficiency Tradeoff in Language Models
- Title(参考訳): LLMは基本的な数学的推論を過小評価しているか?言語モデルにおける精度-効率トレードオフのベンチマーク
- Authors: Gaurav Srivastava, Aafiya Hussain, Sriram Srinivasan, Xuan Wang,
- Abstract要約: 大規模言語モデル (LLM) は複雑な数学的ベンチマークでは優れた性能を得るが、基本的な数学的推論では失敗することがある。
本稿では,正確さと過度に考えることの基本的なトレードオフに焦点を当てる。
本研究は,総合モデル評価のための高精度とトークン効率を組み合わせた調和平均計量であるOverthinking Scoreを紹介する。
- 参考スコア(独自算出の注目度): 6.312798900093575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) achieve impressive performance on complex mathematical benchmarks yet sometimes fail on basic math reasoning while generating unnecessarily verbose responses. In this paper, we present a systematic benchmark and comprehensive empirical study to evaluate the efficiency of reasoning in LLMs, focusing on the fundamental tradeoff between accuracy and overthinking. First, we formalize the accuracy-verbosity tradeoff. Second, we introduce the Overthinking Score, a harmonic-mean metric combining accuracy and token-efficiency for holistic model evaluation. Third, we establish an evaluation protocol with dynamically-generated data across 14 basic math tasks. Fourth, we conduct a large-scale empirical study evaluating 53 LLMs, including reasoning and quantized variants across different reasoning budgets. Our findings reveal: 1) model performance on complex benchmarks does not translate directly to basic math reasoning; 2) reasoning models generate ~18 more tokens while sometimes achieving lower accuracy and exhibit catastrophic collapse when token is constrained, dropping by ~28; 3) the accuracy-verbosity relationship is non-monotonic with extended reasoning budgets yielding diminishing returns (GPT-5/o-series models show zero accuracy gain from low -> medium -> high reasoning effort). Our findings challenge the assumption that longer reasoning in LLMs necessarily improves mathematical reasoning.
- Abstract(参考訳): 大規模言語モデル (LLM) は複雑な数学ベンチマークでは優れた性能を発揮するが、基本的な数学的推論では失敗することがある。
本稿では,LLMにおける推論の効率を評価するための系統的ベンチマークと総合的な実証的研究を行い,精度と過大評価の基本的なトレードオフに着目した。
まず、精度とバービシティのトレードオフを形式化する。
第二に、総合モデル評価のための精度とトークン効率を組み合わせた調和平均計量であるOverthinking Scoreを導入する。
第3に、14の基本的な数学タスクにまたがる動的生成データを用いた評価プロトコルを確立する。
第4に、さまざまな推論予算における推論と定量化のバリエーションを含む53 LLMの評価を大規模に実施する。
私たちの発見は明らかです。
1) 複雑なベンチマークのモデル性能は, 基本的数理推論に直接変換されない。
2) 推論モデルでは,より低い精度でトークンが生成され,トークンが制約された場合に破滅的な崩壊が起こることがある。
3) 精度とバービシティの関係は非単調であり, 還元率を低下させる推論予算が延長されている(GPT-5/o系列モデルでは, 低値から中値までの精度がゼロである)。
本研究は,LLMにおける長推論が必ずしも数学的推論を改善するという仮定に挑戦するものである。
関連論文リスト
- Computational Thinking Reasoning in Large Language Models [69.28428524878885]
計算思考モデル(CTM)は、計算思考パラダイムを大規模言語モデル(LLM)に組み込んだ新しいフレームワークである。
ライブコード実行は推論プロセスにシームレスに統合され、CTMが計算によって考えることができる。
CTMは、精度、解釈可能性、一般化可能性の観点から、従来の推論モデルとツール拡張ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-03T09:11:15Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - SIMCOPILOT: Evaluating Large Language Models for Copilot-Style Code Generation [5.880496520248658]
SIMCOPILOTは、対話型"コパイロット"スタイルのコーディングアシスタントとして、大規模言語モデル(LLM)の役割をシミュレートするベンチマークである。
ベンチマークには、Java(SIMCOPILOTJ)とPython用の専用のサブベンチマークが含まれている。
論文 参考訳(メタデータ) (2025-05-21T04:59:44Z) - Computational Reasoning of Large Language Models [51.629694188014064]
textbfTuring Machine Benchは,Large Language Models(LLM)による推論プロセスの実行能力を評価するベンチマークである。
TMBenchには、自己完結型および知識に依存しない推論、最小主義的な多段階構造、制御可能な難易度、チューリングマシンに基づく理論的基礎の4つの重要な特徴が組み込まれている。
論文 参考訳(メタデータ) (2025-04-29T13:52:47Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
大規模な言語モデルによる数学的推論への既存のアプローチは、一般化可能性(英語版)にはChain-of-Thought(英語版)(CoT)、正確な計算にはTool-Integrated Reasoning(英語版)(TIR)に依存している。
本稿では, LLM が自然に推論戦略をパーソナライズできる適応型フレームワークである TATA (Teaching LLMs according their Aptitude) を提案する。
論文 参考訳(メタデータ) (2025-02-17T16:56:23Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
大規模言語モデル(LLM)は、複数のシナリオでエキサイティングな進歩を見せている。
メモリフットプリントと推論コストを削減する効果的な方法として、量子化は低ビット幅での性能劣化にも直面する。
この研究は、評価システム、詳細な分析、一般的なツールボックスを含む、この研究トピックのための包括的なベンチマークスイートを提供する。
論文 参考訳(メタデータ) (2024-06-15T12:02:14Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [63.08202389132155]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。