TopoMAS: Large Language Model Driven Topological Materials Multiagent System
- URL: http://arxiv.org/abs/2507.04053v1
- Date: Sat, 05 Jul 2025 14:23:12 GMT
- Title: TopoMAS: Large Language Model Driven Topological Materials Multiagent System
- Authors: Baohua Zhang, Xin Li, Huangchao Xu, Zhong Jin, Quansheng Wu, Ce Li,
- Abstract summary: TopoMAS is an interactive human-AI framework that seamlessly orchestrates the materials-discovery pipeline.<n>TopoMAS closes the loop by autonomously integrating computational outcomes into a dynamic knowledge graph.<n>It has already guided the identification of novel topological phases SrSbO3.
- Score: 9.394163894876689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological materials occupy a frontier in condensed-matter physics thanks to their remarkable electronic and quantum properties, yet their cross-scale design remains bottlenecked by inefficient discovery workflows. Here, we introduce TopoMAS (Topological materials Multi-Agent System), an interactive human-AI framework that seamlessly orchestrates the entire materials-discovery pipeline: from user-defined queries and multi-source data retrieval, through theoretical inference and crystal-structure generation, to first-principles validation. Crucially, TopoMAS closes the loop by autonomously integrating computational outcomes into a dynamic knowledge graph, enabling continuous knowledge refinement. In collaboration with human experts, it has already guided the identification of novel topological phases SrSbO3, confirmed by first-principles calculations. Comprehensive benchmarks demonstrate robust adaptability across base Large Language Model, with the lightweight Qwen2.5-72B model achieving 94.55% accuracy while consuming only 74.3-78.4% of tokens required by Qwen3-235B and 83.0% of DeepSeek-V3's usage--delivering responses twice as fast as Qwen3-235B. This efficiency establishes TopoMAS as an accelerator for computation-driven discovery pipelines. By harmonizing rational agent orchestration with a self-evolving knowledge graph, our framework not only delivers immediate advances in topological materials but also establishes a transferable, extensible paradigm for materials-science domain.
Related papers
- PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration [0.0]
We introduce principles-guided material discovery system powered by language inferential multi-agent system (MAS)<n>Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS.<n>Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value.
arXiv Detail & Related papers (2025-04-09T03:05:10Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - Inverse Materials Design by Large Language Model-Assisted Generative Framework [35.04390544440238]
AlloyGAN is a framework that integrates Large Language Model (LLM)-assisted text mining with Conditional Generative Adversarial Networks (CGANs)<n>For metallic glasses, the framework predicts thermodynamic properties with discrepancies of less than 8% from experiments.<n>By bridging generative AI with domain knowledge, AlloyGAN offers a scalable approach to accelerate the discovery of materials with tailored properties.
arXiv Detail & Related papers (2025-02-25T11:52:59Z) - DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
We propose DARWIN 1.5, the largest open-source large language model tailored for materials science.<n> DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery.<n>Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer.
arXiv Detail & Related papers (2024-12-16T16:51:27Z) - Foundation Model for Composite Microstructures: Reconstruction, Stiffness, and Nonlinear Behavior Prediction [0.0]
We present a foundation model specifically designed for composite materials.<n>Our findings validate the feasibility and effectiveness of foundation models in composite materials.<n>This framework enables high-accuracy predictions even when experimental data are scarce.
arXiv Detail & Related papers (2024-11-10T19:06:25Z) - X2-DFD: A framework for eXplainable and eXtendable Deepfake Detection [55.77552681618732]
X2-DFD is an eXplainable and eXtendable framework based on multimodal large-language models (MLLMs) for deepfake detection.<n>The first stage, Model Feature Assessment, systematically evaluates the detectability of forgery-related features for the MLLM.<n>The second stage, Explainable dataset Construction, consists of two key modules: Strong Feature Strengthening and Weak Feature Supplementing.<n>The third stage, Fine-tuning and Inference, involves fine-tuning the MLLM on the constructed dataset and deploying it for final detection and explanation.
arXiv Detail & Related papers (2024-10-08T15:28:33Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
Compound AI Systems consisting of many language model inference calls are increasingly employed.
In this work, we construct systems, which we call Networks of Networks (NoNs) organized around the distinction between generating a proposed answer and verifying its correctness.
We introduce a verifier-based judge NoN with K generators, an instantiation of "best-of-K" or "judge-based" compound AI systems.
arXiv Detail & Related papers (2024-07-23T20:40:37Z) - Efficient Materials Informatics between Rockets and Electrons [0.0]
This dissertation focuses on the design of functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs)
At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models.
The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution.
arXiv Detail & Related papers (2024-07-05T17:03:26Z) - Band-gap regression with architecture-optimized message-passing neural
networks [1.9590152885845324]
We train an MPNN to first classify materials through density functional theory data from the AFLOW database as being metallic or semiconducting/insulating.
We then perform a neural-architecture search to explore the model architecture and hyper parameter space of MPNNs to predict the band gaps of the materials identified as non-metals.
The top-performing models from the search are pooled into an ensemble that significantly outperforms existing models from the literature.
arXiv Detail & Related papers (2023-09-12T16:13:10Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
Machine learning tools are now commonly employed to virtually screen material candidates with desired properties.
This approach is inefficient, and severely constrained by the candidates that human imagination can conceive.
We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions.
arXiv Detail & Related papers (2020-11-04T21:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.