PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2504.08810v1
- Date: Wed, 09 Apr 2025 03:05:10 GMT
- Title: PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
- Authors: Zheyuan Lai, Yingming Pu,
- Abstract summary: We introduce principles-guided material discovery system powered by language inferential multi-agent system (MAS)<n>Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS.<n>Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex chemical space and limited knowledge scope with biases holds immense challenge for human scientists, yet in automated materials discovery. Existing intelligent methods relies more on numerical computation, leading to inefficient exploration and results with hard-interpretability. To bridge this gap, we introduce a principles-guided material discovery system powered by language inferential multi-agent system (MAS), namely PriM. Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS, enabling systematic exploration while maintaining scientific rigor. Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value while providing transparent reasoning pathways. This approach develops an automated-and-transparent paradigm for material discovery, with broad implications for rational design of functional materials. Code is publicly available at our \href{https://github.com/amair-lab/PriM}{GitHub}.
Related papers
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - CodeScientist: End-to-End Semi-Automated Scientific Discovery with Code-based Experimentation [48.12054700748627]
We introduce CodeScientist, a novel ASD system that frames ideation and experiment construction as a form of genetic search jointly.<n>We use this paradigm to conduct hundreds of automated experiments on machine-generated ideas broadly in the domain of agents and virtual environments.
arXiv Detail & Related papers (2025-03-20T22:37:17Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration [13.689620109856783]
We developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials.
The core strength of MatPilot is its natural language interactive human-machine collaboration.
MatPilot integrates unique cognitive abilities, extensive accumulated experience, and ongoing curiosity of human-beings.
arXiv Detail & Related papers (2024-11-10T12:23:44Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
A multi-agent AI model is used to automate the discovery of new metallic alloys.
We focus on the NbMoTa family of body-centered cubic (bcc) alloys, modeled using an ML-based interatomic potential.
By synergizing the predictive power of GNNs with the dynamic collaboration of LLM-based agents, the system autonomously navigates vast alloy design spaces.
arXiv Detail & Related papers (2024-10-17T17:06:26Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding.
We present SciAgents, an approach that leverages three core concepts.
The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties.
Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a swarm of intelligence' similar to biological systems.
arXiv Detail & Related papers (2024-09-09T12:25:10Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Materials Expert-Artificial Intelligence for Materials Discovery [39.67752644916519]
We introduce "Materials Expert-Artificial Intelligence" (ME-AI) to encapsulate and articulate this human intuition.
The ME-AI learned descriptors independently reproduce expert intuition and expand upon it.
Our success points to the "machine bottling human insight" approach as promising for machine learning-aided material discovery.
arXiv Detail & Related papers (2023-12-05T14:29:18Z) - Unsupervised physics-informed disentanglement of multimodal data for
high-throughput scientific discovery [4.923937591056569]
We introduce physics-informed multimodal autoencoders (PIMA)
PIMA is a variational inference framework for discovering shared information in multimodal scientific datasets.
A dataset of lattice metamaterials from metal additive manufacturing demonstrates accurate cross modal inference.
arXiv Detail & Related papers (2022-02-07T14:47:00Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.