論文の概要: skfolio: Portfolio Optimization in Python
- arxiv url: http://arxiv.org/abs/2507.04176v1
- Date: Sat, 05 Jul 2025 22:08:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.054077
- Title: skfolio: Portfolio Optimization in Python
- Title(参考訳): skfolio: PythonのPortfolio最適化
- Authors: Carlo Nicolini, Matteo Manzi, Hugo Delatte,
- Abstract要約: skfolioは、ポートフォリオの構築とリスク管理のためのオープンソースのPythonライブラリである。
このライブラリは、Scikit-Lernの適合予測変換パラダイムに固執することにより、研究者や実践者がポートフォリオ最適化に機械学習を活用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Portfolio optimization is a fundamental challenge in quantitative finance, requiring robust computational tools that integrate statistical rigor with practical implementation. We present skfolio, an open-source Python library for portfolio construction and risk management that seamlessly integrates with the scikit-learn ecosystem. skfolio provides a unified framework for diverse allocation strategies, from classical mean-variance optimization to modern clustering-based methods, state-of-the-art financial estimators with native interfaces, and advanced cross-validation techniques tailored for financial time series. By adhering to scikit-learn's fit-predict-transform paradigm, the library enables researchers and practitioners to leverage machine learning workflows for portfolio optimization, promoting reproducibility and transparency in quantitative finance.
- Abstract(参考訳): ポートフォリオ最適化は定量的ファイナンスにおいて基本的な課題であり、統計的厳密さと実用的な実装を統合する堅牢な計算ツールを必要とする。
我々は、ポートフォリオ構築とリスク管理のためのオープンソースのPythonライブラリskfolioを、Scikit-Lernエコシステムとシームレスに統合する。
skfolioは、古典的な平均分散最適化から現代的なクラスタリングベースのメソッド、ネイティブインターフェースを備えた最先端の金融推定器、金融時系列に合わせた高度なクロスバリデーション技術など、多様なアロケーション戦略のための統一されたフレームワークを提供する。
このライブラリは、Scikit-Lernの適合予測変換パラダイムに固執することにより、研究者や実践者がポートフォリオ最適化に機械学習ワークフローを活用し、定量的ファイナンスにおける再現性と透明性を促進することができる。
関連論文リスト
- Demystifying Domain-adaptive Post-training for Financial LLMs [79.581577578952]
FINDAPは、大規模言語モデル(LLM)のドメイン適応後学習に関する体系的できめ細かな研究である
このアプローチは、FinCap、FinRec、FinTrain、FinEvalの4つの重要なコンポーネントで構成されています。
結果として得られるモデルであるLlama-Finは、幅広い財務タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-01-09T04:26:15Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Conformal Predictive Portfolio Selection [10.470114319701576]
共形予測による予測ポートフォリオ選択のためのフレームワークを提案する。
提案手法は,将来のポートフォリオのリターンを予測し,対応する予測インターバルを計算し,これらのインターバルに基づいて興味のポートフォリオを選択する。
本稿では,ARモデルに適用することでCPPSフレームワークの有効性を実証し,実証実験によりその性能を検証した。
論文 参考訳(メタデータ) (2024-10-19T15:42:49Z) - Quantum-Inspired Portfolio Optimization In The QUBO Framework [0.0]
最適混合資産の選択を目的としたポートフォリオ最適化について,量子インスパイアされた最適化手法を提案する。
本研究は、資産配分とポートフォリオ管理に有用なツールとしての可能性を示した、金融における量子インスパイアされた技術に関する文献の増大に寄与する。
論文 参考訳(メタデータ) (2024-10-08T11:36:43Z) - Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency [0.0]
本稿では,取引コストを予測するグラフニューラルネットワーク(GNN)と,コスト効率の高いリバランスパスを特定するDijkstraのアルゴリズムを統合することで,ポートフォリオのリバランスを最適化する新たなアプローチを提案する。
実証的な結果は、このハイブリッドアプローチが取引コストを大幅に削減し、ポートフォリオマネージャに強力なツールを提供することを示している。
論文 参考訳(メタデータ) (2024-10-02T11:00:52Z) - ZooPFL: Exploring Black-box Foundation Models for Personalized Federated
Learning [95.64041188351393]
本稿では,限られた資源とパーソナライゼーションの両課題を解決しようと試みる。
個人化フェデレート学習におけるゼロ階最適化を用いたZOOPFLという手法を提案する。
計算コストの削減とパーソナライゼーションの向上を目的として,低次元およびクライアント固有の埋め込みを持つオートエンコーダを組み込む入力手術を提案する。
論文 参考訳(メタデータ) (2023-10-08T12:26:13Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - TPLVM: Portfolio Construction by Student's $t$-process Latent Variable
Model [3.5408022972081694]
我々は,低次元の潜伏変数による財務時系列の非ガウス的変動を記述するために,学生のTPLVM($t$-process latent variable model)を提案する。
これらのポートフォリオを比較することで、提案されたポートフォリオが既存のガウスプロセス潜在変数モデルよりも優れていることを確認した。
論文 参考訳(メタデータ) (2020-01-29T02:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。