Payload-Aware Intrusion Detection with CMAE and Large Language Models
- URL: http://arxiv.org/abs/2503.20798v1
- Date: Sun, 23 Mar 2025 02:56:32 GMT
- Title: Payload-Aware Intrusion Detection with CMAE and Large Language Models
- Authors: Yongcheol Kim, Chanjae Lee, Young Yoon,
- Abstract summary: Intrusion Detection Systems (IDS) are crucial for identifying malicious traffic, yet traditional signature-based methods struggle with zero-day attacks and high false positive rates.<n>This study proposes Xavier-CMAE, an enhanced Convolutional Multi-Head Attention Ensemble (CMAE) model that improves detection accuracy while reducing computational overhead.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion Detection Systems (IDS) are crucial for identifying malicious traffic, yet traditional signature-based methods struggle with zero-day attacks and high false positive rates. AI-driven packet-capture analysis offers a promising alternative. However, existing approaches rely heavily on flow-based or statistical features, limiting their ability to detect fine-grained attack patterns. This study proposes Xavier-CMAE, an enhanced Convolutional Multi-Head Attention Ensemble (CMAE) model that improves detection accuracy while reducing computational overhead. By replacing Word2Vec embeddings with a Hex2Int tokenizer and Xavier initialization, Xavier-CMAE eliminates pre-training, accelerates training, and achieves 99.971% accuracy with a 0.018% false positive rate, outperforming Word2Vec-based methods. Additionally, we introduce LLM-CMAE, which integrates pre-trained Large Language Model (LLM) tokenizers into CMAE. While LLMs enhance feature extraction, their computational cost hinders real-time detection. LLM-CMAE balances efficiency and performance, reaching 99.969% accuracy with a 0.019% false positive rate. This work advances AI-powered IDS by (1) introducing a payload-based detection framework, (2) enhancing efficiency with Xavier-CMAE, and (3) integrating LLM tokenizers for improved real-time detection.
Related papers
- ML-Enhanced AES Anomaly Detection for Real-Time Embedded Security [0.0]
We propose a comprehensive framework that enhances AES-128 encryption security through controlled anomaly injection and real-time anomaly detection.<n>We simulate timing and fault-based anomalies by injecting execution delays and ciphertext perturbations during encryption, generating labeled datasets for detection model training.<n>Our results show that ML-based detection significantly outperforms threshold-based methods in precision and recall while maintaining real-time performance on embedded hardware.
arXiv Detail & Related papers (2025-07-06T00:22:58Z) - Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing [6.579756339673344]
Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS)<n>We propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection.
arXiv Detail & Related papers (2025-07-02T09:51:41Z) - ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining [53.893792844055106]
Large language model pretraining is compute-intensive, yet many tokens contribute marginally to learning, resulting in inefficiency.<n>We introduce Selective Efficient Language Modeling, a risk-aware algorithm that improves training efficiency and distributional robustness by performing online token-level batch selection.<n> Experiments on GPT-2 pretraining show that ESLM significantly reduces training FLOPs while maintaining or improving both perplexity and downstream performance compared to baselines.
arXiv Detail & Related papers (2025-05-26T12:23:26Z) - R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-Sparse is a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs.
Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity.
arXiv Detail & Related papers (2025-04-28T03:30:32Z) - Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks [22.036794530902608]
This paper introduces a novel lightweight approach to DoS attack detection based on Kolmogorov-Arnold Networks (KANs)<n>KAN achieves state-of-the-art detection performance while maintaining minimal resource requirements.<n>Compared to existing solutions, KAN reduces memory requirements by up to 98% while maintaining competitive detection rates.
arXiv Detail & Related papers (2025-02-03T21:19:46Z) - HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs [45.37278584462772]
We present HALO, a novel quantization-aware training approach for Transformers.<n>Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision.<n>Applying to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks.
arXiv Detail & Related papers (2025-01-05T18:41:54Z) - Intent Detection in the Age of LLMs [3.755082744150185]
Intent detection is a critical component of task-oriented dialogue systems (TODS)
Traditional approaches relied on computationally efficient supervised sentence transformer encoder models.
The emergence of generative large language models (LLMs) with intrinsic world knowledge presents new opportunities to address these challenges.
arXiv Detail & Related papers (2024-10-02T15:01:55Z) - CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection [16.34314710823127]
We propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG.
It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency.
CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space.
arXiv Detail & Related papers (2024-06-20T14:45:13Z) - A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid
FPGAs [13.581341206178525]
Intrusion detection and mitigation approaches have shown promising results in detecting multiple attack vectors in Controller Area Network (CAN)
We present a lightweight multi-attack quantised machine learning model that is deployed using Xilinx's Deep Learning Processing Unit IP on a Zynq Ultrascale+ (XCZU3EG) FPGA.
The model detects denial of service and fuzzing attacks with an accuracy of above 99 % and a false positive rate of 0.07%, which are comparable to the state-of-the-art techniques in the literature.
arXiv Detail & Related papers (2024-01-19T13:39:05Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
Fides is a novel framework for real-time integrity validation of ML-as-a-Service (ML) inference.
Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack.
We devised a generative adversarial network framework for training the attack detection and re-classification models.
arXiv Detail & Related papers (2023-03-31T19:17:30Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.