論文の概要: Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning
- arxiv url: http://arxiv.org/abs/2507.04250v1
- Date: Sun, 06 Jul 2025 05:47:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.08835
- Title: Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning
- Title(参考訳): 過度なシフト: ターゲット表現を微調整したアライメント言語モデルにおける過剰な拒絶の軽減
- Authors: Mahavir Dabas, Si Chen, Charles Fleming, Ming Jin, Ruoxi Jia,
- Abstract要約: ACTORは、さまざまなクエリから内部アクティベーションパターンを活用することで、過剰な拒絶を最小化する。
ACTORは、リファインをトリガーするアクティベーションコンポーネントを正確に識別し、調整し、リファイン機構のより強力な制御を提供する。
- 参考スコア(独自算出の注目度): 19.823784666021822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety alignment is crucial for large language models (LLMs) to resist malicious instructions but often results in over-refusals, where benign prompts are unnecessarily rejected, impairing user experience and model utility. We introduce ACTOR (Activation-Based Training for Over-Refusal Reduction), a robust and compute- and data-efficient training framework that minimizes over-refusals by leveraging internal activation patterns from diverse queries. ACTOR precisely identifies and adjusts the activation components that trigger refusals, providing stronger control over the refusal mechanism. By fine-tuning only a single model layer, ACTOR effectively reduces over-refusals across multiple benchmarks while maintaining the model's ability to handle harmful queries and preserve overall utility.
- Abstract(参考訳): 大規模な言語モデル(LLM)では、悪意のある命令に抵抗する上で、安全性の調整が不可欠だが、しばしば過剰な拒絶が発生し、良心的なプロンプトが不要に拒否され、ユーザエクスペリエンスやモデルユーティリティが損なわれる。
本稿では,ACTOR(Activation-Based Training for Over-Refusal Reduction)について紹介する。
ACTORは、リファインをトリガーするアクティベーションコンポーネントを正確に識別し、調整し、リファイン機構のより強力な制御を提供する。
単一のモデル層のみを微調整することにより、ACTORは、有害なクエリを処理し、全体的なユーティリティを保持するモデルの能力を維持しながら、複数のベンチマークにわたる過剰な拒絶を効果的に削減する。
関連論文リスト
- Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
大規模視覚言語モデル(LVLM)のための軽量で認証に依存しない防御フレームワークについて紹介する。
私たちのフレームワークは、命令チューニングの下で、アダプタモジュールとテキスト埋め込み層のみを微調整します。
Flickr30kとMSCOCOに対する7つの攻撃に対する実験は、我々の攻撃の成功率をほぼゼロに低下させることを示した。
論文 参考訳(メタデータ) (2025-06-04T01:23:35Z) - A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems [20.672668625179526]
遅延共起バイアスは、ユーザのフィードバックとアイテムの露出の間の真の因果関係を曖昧にする可能性がある。
本稿では,Recommender Systemsにおける表現学習のための遅延因果制約(Latent Causality Constraints)と呼ばれる新しい生成フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-22T14:09:39Z) - CTRAP: Embedding Collapse Trap to Safeguard Large Language Models from Harmful Fine-Tuning [12.293101110323722]
ファインチューニング・アズ・ア・サービス(英語版)は、有害なファインチューニング攻撃に対してモデルを公開する。
我々は、選択的な除去ではなく、モデル崩壊を誘発するパラダイムシフトを提案する。
この崩壊は、攻撃者が悪用する非常に一般的な機能を直接中和する。
論文 参考訳(メタデータ) (2025-05-22T11:47:08Z) - Patterns and Mechanisms of Contrastive Activation Engineering [0.374490703387131]
CAEは、フレキシブルでタスク固有の振る舞いチューニングの新しいパラダイムを導入する可能性がある。
本研究では,配当・配当・配当設定におけるCAEの性能を分析し,欠点を評価し,その効果的な展開のための包括的ガイドラインの開発に着手する。
論文 参考訳(メタデータ) (2025-05-06T05:15:12Z) - UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning [57.081646768835704]
ユーザ仕様や法的フレームワークは、しばしば、大きな言語モデル(LLM)を含む、事前訓練されたモデルから削除される情報を必要とする。
これは、既に訓練済みのモデルからデータポイントのセットを削除または"偽造"する必要がある。
本研究では,非学習時の副次的損傷を軽減するための手法に依存しないデータ選択フレームワークUPCOREを提案する。
論文 参考訳(メタデータ) (2025-02-20T22:51:10Z) - CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization [7.282200564983221]
大規模言語モデル(LLM)は、隠れたトリガーを介して出力を操作するバックドア攻撃に対して脆弱である。
本稿では,バックドアモデルがトリガ時に不安定な層単位の隠蔽表現を示すという観測を生かした内部一貫性規則化(CROW)を提案する。
CROWは、微調整やバックドアの中立化など、クリーンな参照モデルや知識のトリガを必要とせず、小さなクリーンなデータセットのみを使用して、レイヤ間の一貫性を強制する。
論文 参考訳(メタデータ) (2024-11-18T07:52:12Z) - Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders [56.47577824219207]
本稿では,侵入的微調整技術に関連する隠れたコストを明らかにする。
ファインチューニングのための新しいモデル再プログラミング手法を導入し、それをリプログラマと呼ぶ。
我々の経験的証拠は、Re Programmerは侵入力が少なく、より優れた下流モデルが得られることを示している。
論文 参考訳(メタデータ) (2024-03-16T04:19:48Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。