An Explainable Transformer Model for Alzheimer's Disease Detection Using Retinal Imaging
- URL: http://arxiv.org/abs/2507.04259v1
- Date: Sun, 06 Jul 2025 06:40:42 GMT
- Title: An Explainable Transformer Model for Alzheimer's Disease Detection Using Retinal Imaging
- Authors: Saeed Jamshidiha, Alireza Rezaee, Farshid Hajati, Mojtaba Golzan, Raymond Chiong,
- Abstract summary: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide.<n>In this study, we propose Retformer, a novel transformer-based architecture for detecting AD using retinal imaging modalities.
- Score: 5.3785187022022845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide. In the absence of effective treatment options, early diagnosis is crucial for initiating management strategies to delay disease onset and slow down its progression. In this study, we propose Retformer, a novel transformer-based architecture for detecting AD using retinal imaging modalities, leveraging the power of transformers and explainable artificial intelligence. The Retformer model is trained on datasets of different modalities of retinal images from patients with AD and age-matched healthy controls, enabling it to learn complex patterns and relationships between image features and disease diagnosis. To provide insights into the decision-making process of our model, we employ the Gradient-weighted Class Activation Mapping algorithm to visualize the feature importance maps, highlighting the regions of the retinal images that contribute most significantly to the classification outcome. These findings are compared to existing clinical studies on detecting AD using retinal biomarkers, allowing us to identify the most important features for AD detection in each imaging modality. The Retformer model outperforms a variety of benchmark algorithms across different performance metrics by margins of up to 11\.
Related papers
- Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.<n>Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.<n>We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Attention-based Efficient Classification for 3D MRI Image of Alzheimer's
Disease [2.6793044027881865]
This study proposes a novel Alzheimer's disease detection model based on Convolutional Neural Networks.
The experimental results indicate that the employed 2D fusion algorithm effectively improves the model's training expense.
arXiv Detail & Related papers (2024-01-25T12:18:46Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes.
This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image.
Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene.
arXiv Detail & Related papers (2023-09-19T08:00:26Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
We propose an innovative multi-disease detection pipeline for retinal imaging.
Our pipeline includes state-of-the-art strategies like transfer learning, class weighting, real-time image augmentation and Focal loss utilization.
arXiv Detail & Related papers (2021-03-26T18:02:17Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.