DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation
- URL: http://arxiv.org/abs/2507.04671v1
- Date: Mon, 07 Jul 2025 05:22:55 GMT
- Title: DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation
- Authors: Maolin Wang, Tianshuo Wei, Sheng Zhang, Ruocheng Guo, Wanyu Wang, Shanshan Ye, Lixin Zou, Xuetao Wei, Xiangyu Zhao,
- Abstract summary: We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem.<n>DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization.<n>Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs.
- Score: 33.08911251924756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
We develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture.
We find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search.
arXiv Detail & Related papers (2023-06-01T02:06:13Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
This article presents the third version of a sequential model-based NAS algorithm targeting different hardware environments and multiple classification tasks.
Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks.
The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
arXiv Detail & Related papers (2022-12-13T17:14:14Z) - Pareto-aware Neural Architecture Generation for Diverse Computational
Budgets [94.27982238384847]
Existing methods often perform an independent architecture search process for each target budget.
We propose a Neural Architecture Generator (PNAG) which only needs to be trained once and dynamically produces the optimal architecture for any given budget via inference.
Such a joint search algorithm not only greatly reduces the overall search cost but also improves the results.
arXiv Detail & Related papers (2022-10-14T08:30:59Z) - You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms [10.11289927237036]
Differentiable neural architecture search (NAS) has evolved as the most dominant alternative to automatically design competitive deep neural networks (DNNs)
We introduce a lightweight hardware-aware differentiable NAS framework dubbed LightNAS, striving to find the required architecture through a one-time search.
Extensive experiments are conducted to show the superiority of LightNAS over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-08-30T02:23:23Z) - Efficient Search of Multiple Neural Architectures with Different
Complexities via Importance Sampling [3.759936323189417]
This study focuses on the architecture complexity-aware one-shot NAS that optimize the objective function composed of the weighted sum of two metrics.
The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets.
arXiv Detail & Related papers (2022-07-21T07:06:03Z) - Proxyless Neural Architecture Adaptation for Supervised Learning and
Self-Supervised Learning [3.766702945560518]
We propose proxyless neural architecture adaptation that is reproducible and efficient.
Our method can be applied to both supervised learning and self-supervised learning.
arXiv Detail & Related papers (2022-05-15T02:49:48Z) - $\eta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
We propose a simple-but-efficient regularization method, termed as Beta-Decay, to regularize the DARTS-based NAS searching process.
Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets.
arXiv Detail & Related papers (2022-03-03T11:47:14Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.