Who's the Mole? Modeling and Detecting Intention-Hiding Malicious Agents in LLM-Based Multi-Agent Systems
- URL: http://arxiv.org/abs/2507.04724v1
- Date: Mon, 07 Jul 2025 07:34:34 GMT
- Title: Who's the Mole? Modeling and Detecting Intention-Hiding Malicious Agents in LLM-Based Multi-Agent Systems
- Authors: Yizhe Xie, Congcong Zhu, Xinyue Zhang, Minghao Wang, Chi Liu, Minglu Zhu, Tianqing Zhu,
- Abstract summary: We investigate intention-hiding threats in multi-agent systems powered by Large Language Models (LLM-MAS)<n>We propose a psychology-based detection framework AgentXposed, which combines the HEXACO personality model with the Reid Technique.<n>Our findings reveal the structural and behavioral risks posed by intention-hiding attacks and offer valuable insights into securing LLM-based multi-agent systems.
- Score: 15.843105510334388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent systems powered by Large Language Models (LLM-MAS) demonstrate remarkable capabilities in collaborative problem-solving. While LLM-MAS exhibit strong collaborative abilities, the security risks in their communication and coordination remain underexplored. We bridge this gap by systematically investigating intention-hiding threats in LLM-MAS, and design four representative attack paradigms that subtly disrupt task completion while maintaining high concealment. These attacks are evaluated in centralized, decentralized, and layered communication structures. Experiments conducted on six benchmark datasets, including MMLU, MMLU-Pro, HumanEval, GSM8K, arithmetic, and biographies, demonstrate that they exhibit strong disruptive capabilities. To identify these threats, we propose a psychology-based detection framework AgentXposed, which combines the HEXACO personality model with the Reid Technique, using progressive questionnaire inquiries and behavior-based monitoring. Experiments conducted on six types of attacks show that our detection framework effectively identifies all types of malicious behaviors. The detection rate for our intention-hiding attacks is slightly lower than that of the two baselines, Incorrect Fact Injection and Dark Traits Injection, demonstrating the effectiveness of intention concealment. Our findings reveal the structural and behavioral risks posed by intention-hiding attacks and offer valuable insights into securing LLM-based multi-agent systems through psychological perspectives, which contributes to a deeper understanding of multi-agent safety. The code and data are available at https://anonymous.4open.science/r/AgentXposed-F814.
Related papers
- Evo-MARL: Co-Evolutionary Multi-Agent Reinforcement Learning for Internalized Safety [52.12899798062852]
Multi-agent systems (MAS) built on multimodal large language models exhibit strong collaboration and performance.<n>Evo-MARL is a novel multi-agent reinforcement learning framework that enables all task agents to jointly acquire defensive capabilities.<n>Evo-MARL reduces attack success rates by up to 22% while boosting accuracy by up to 5% on reasoning tasks.
arXiv Detail & Related papers (2025-08-05T19:26:55Z) - Bridging AI and Software Security: A Comparative Vulnerability Assessment of LLM Agent Deployment Paradigms [1.03121181235382]
Large Language Model (LLM) agents face security vulnerabilities spanning AI-specific and traditional software domains.<n>This study bridges this gap through comparative evaluation of Function Calling architecture and Model Context Protocol (MCP) deployment paradigms.<n>We tested 3,250 attack scenarios across seven language models, evaluating simple, composed, and chained attacks targeting both AI-specific threats and software vulnerabilities.
arXiv Detail & Related papers (2025-07-08T18:24:28Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
This work explores the security issues surrounding mobile multimodal agents.<n>It attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information.<n>It also designs an automated assisted assessment scheme based on a large language model.
arXiv Detail & Related papers (2025-07-01T15:10:00Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
We present a system-level anomaly detection framework tailored for large language model (LLM)-based multi-agent systems (MAS)<n>We propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels.<n>Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning.
arXiv Detail & Related papers (2025-05-30T04:25:19Z) - MultiPhishGuard: An LLM-based Multi-Agent System for Phishing Email Detection [3.187381965457262]
MultiPhishGuard is a dynamic multi-agent detection system that synergizes specialized expertise with adversarial-aware reinforcement learning.<n>Our framework employs five cooperative agents with automatically adjusted decision weights powered by a Proximal Policy Optimization reinforcement learning algorithm.<n>Experiments demonstrate that MultiPhishGuard achieves high accuracy (97.89%) with low false positive (2.73%) and false negative rates (0.20%)
arXiv Detail & Related papers (2025-05-26T23:27:15Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents [60.30753230776882]
LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions.<n>We present MELON, a novel IPI defense that detects attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function.
arXiv Detail & Related papers (2025-02-07T18:57:49Z) - Flooding Spread of Manipulated Knowledge in LLM-Based Multi-Agent Communities [28.244283407749265]
We investigate the security implications of large language models (LLMs) in multi-agent systems.
We propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection.
We demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge.
arXiv Detail & Related papers (2024-07-10T16:08:46Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z) - Forcing Generative Models to Degenerate Ones: The Power of Data
Poisoning Attacks [10.732558183444985]
Malicious actors can covertly exploit large language models (LLMs) vulnerabilities through poisoning attacks aimed at generating undesirable outputs.
This paper explores various poisoning techniques to assess their effectiveness across a range of generative tasks.
We show that it is possible to successfully poison an LLM during the fine-tuning stage using as little as 1% of the total tuning data samples.
arXiv Detail & Related papers (2023-12-07T23:26:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.