FedPall: Prototype-based Adversarial and Collaborative Learning for Federated Learning with Feature Drift
- URL: http://arxiv.org/abs/2507.04781v1
- Date: Mon, 07 Jul 2025 08:58:39 GMT
- Title: FedPall: Prototype-based Adversarial and Collaborative Learning for Federated Learning with Feature Drift
- Authors: Yong Zhang, Feng Liang, Guanghu Yuan, Min Yang, Chengming Li, Xiping Hu,
- Abstract summary: Federated learning (FL) enables collaborative training of a global model in a centralized server with data from multiple parties.<n>We propose FedPall, an FL framework that utilizes prototype-based adversarial learning to unify feature spaces and collaborative learning to reinforce class information within the features.<n> evaluation results on three representative feature-drifted datasets demonstrate FedPall's consistently superior performance in classification with feature-drifted data in the FL scenario.
- Score: 29.2377620193847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) enables collaborative training of a global model in the centralized server with data from multiple parties while preserving privacy. However, data heterogeneity can significantly degrade the performance of the global model when each party uses datasets from different sources to train a local model, thereby affecting personalized local models. Among various cases of data heterogeneity, feature drift, feature space difference among parties, is prevalent in real-life data but remains largely unexplored. Feature drift can distract feature extraction learning in clients and thus lead to poor feature extraction and classification performance. To tackle the problem of feature drift in FL, we propose FedPall, an FL framework that utilizes prototype-based adversarial learning to unify feature spaces and collaborative learning to reinforce class information within the features. Moreover, FedPall leverages mixed features generated from global prototypes and local features to enhance the global classifier with classification-relevant information from a global perspective. Evaluation results on three representative feature-drifted datasets demonstrate FedPall's consistently superior performance in classification with feature-drifted data in the FL scenario.
Related papers
- Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation [4.869042695112397]
Federated learning (FL) has emerged as a promising paradigm in machine learning.<n>In FL, a global model is trained iteratively on local datasets residing on individual devices.<n>This paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates.
arXiv Detail & Related papers (2025-03-29T04:29:24Z) - FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server.
Existing FL methods face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift.
We propose a pioneering framework called FLea, incorporating the following key components.
arXiv Detail & Related papers (2024-06-13T19:28:08Z) - FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning [27.782676760198697]
Federated Learning (FL) has emerged as a pivotal framework for the development of effective global models.
A key challenge in FL is client drift, where data heterogeneity impedes the aggregation of scattered knowledge.
We introduce a novel algorithm named FedDr+, which empowers local model alignment using dot-regression loss.
arXiv Detail & Related papers (2024-06-04T14:34:13Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
For a federated learning model to perform well, it is crucial to have a diverse and representative dataset.
We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium.
We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population.
arXiv Detail & Related papers (2023-06-08T23:38:25Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - A Closer Look at Personalization in Federated Image Classification [33.27317065917578]
Federated Learning (FL) is developed to learn a single global model across the decentralized data.
This paper shows that it is possible to achieve flexible personalization after the convergence of the global model.
We propose RepPer, an independent two-stage personalized FL framework.
arXiv Detail & Related papers (2022-04-22T06:32:18Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
Federated learning is a method of training models on private data distributed over multiple devices.
We propose a new federated learning algorithm that jointly learns compact local representations on each device.
We also evaluate on the task of personalized mood prediction from real-world mobile data where privacy is key.
arXiv Detail & Related papers (2020-01-06T12:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.