論文の概要: Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning
- arxiv url: http://arxiv.org/abs/2507.04790v1
- Date: Mon, 07 Jul 2025 09:11:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.347342
- Title: Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning
- Title(参考訳): 対話型モーションプランニング:ロバストプランニングのための分散モーションデータセットを効果的に活用する
- Authors: Giwon Lee, Wooseong Jeong, Daehee Park, Jaewoo Jeong, Kuk-Jin Yoon,
- Abstract要約: 対象領域への適応中に異なる領域で訓練されたパラメータチェックポイントを活用する新しい手法であるInteraction-Merged Motion Planning (IMMP)を提案する。
エージェントの動作とインタラクションをキャプチャし、ソースドメインから多種多様な情報を十分に抽出するためのマージと、適応可能なモデルを構築するためのマージである。
提案手法は,様々な計画ベンチマークやモデルを用いて評価し,従来の手法に比べて優れた性能を示す。
- 参考スコア(独自算出の注目度): 35.58432855626201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
- Abstract(参考訳): 自律走行ロボットにとって、運動計画は重要な要素である。
様々な軌道データセットが存在するが、エージェントの相互作用や環境特性の違いにより、ターゲット領域に効果的に活用することは困難である。
ドメイン適応やアンサンブル学習のような従来のアプローチでは、複数のソースデータセットを活用するが、ドメインの不均衡、破滅的な忘れ、高い計算コストに悩まされる。
これらの課題に対処するために、ターゲットドメインへの適応中に異なるドメインで訓練されたパラメータチェックポイントを活用する新しいアプローチであるInteraction-Merged Motion Planning (IMMP)を提案する。
エージェントの振る舞いとインタラクションをキャプチャし、ソースドメインから多様な情報を十分に抽出するための事前マージと、ターゲットドメインへの多様なインタラクションを効率的に転送する適応可能なモデルの構築である。
提案手法は,様々な計画ベンチマークやモデルを用いて評価し,従来の手法に比べて優れた性能を示す。
関連論文リスト
- SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction [21.780343024406285]
SocialMOIFはこれらの課題に対処するために提案されており、近隣グループ間の高次の意図的相互作用に集中している。
SocialMOIF内では、軌道分布近似器が軌道を実際のデータとより密に整合する値へと導くように設計されている。
より正確で効率的な並列予測を可能にするために、グローバルな軌道が導入された。
論文 参考訳(メタデータ) (2025-04-22T06:14:49Z) - Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
軌道予測と計画は、自動運転車が動的環境下で安全かつ効率的に走行するために不可欠である。
近年の拡散型生成モデルはマルチエージェント軌道生成において有望であるが,その遅いサンプリングは高周波計画タスクには適さない。
我々は,エゴ車両の航法目標に基づいて,エゴと周辺エージェントの共同分布からサンプルを採取する予測プランナを構築するために,一貫性モデルを活用する。
論文 参考訳(メタデータ) (2025-02-12T00:26:01Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(MRMP Diffusion, SMD)は, 制約付き最適化を拡散サンプリングプロセスに統合し, 衝突のない, キネマティックに実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
人間のポーズ推定(HPE)は最近、モーション分析、バーチャルリアリティー、ヘルスケア等に広く応用されているため、注目を集めている。
時間と労働集約的なアノテーションのために、ラベル付き現実世界のデータセットが不足している。
本稿では,ドメイン適応型人間のポーズ推定のための表現集約と分離を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-29T17:59:45Z) - Dynamic Detection of Relevant Objectives and Adaptation to Preference Drifts in Interactive Evolutionary Multi-Objective Optimization [2.4374097382908477]
意思決定過程を通じて進化し,目的の関連性に影響を与えるDM選好の動的性質について検討する。
このような変化が起こると、時代遅れや相反する好みを解消する手法を提案する。
実験により,提案手法は進化する嗜好を効果的に管理し,アルゴリズムが生成するソリューションの品質と望ましさを著しく向上することを示した。
論文 参考訳(メタデータ) (2024-11-07T09:09:06Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
異常セグメンテーションは、画像中の非定型物体を識別する上で重要な役割を担っている。
既存の手法は合成データに顕著な結果を示すが、合成データドメインと実世界のデータドメインの相違を考慮できないことが多い。
シーンと個々のサンプルレベルの両方で、ドメイン間の機能を調和させるのに適した、マルチグラニュラリティ・クロスドメインアライメントフレームワークを導入します。
論文 参考訳(メタデータ) (2023-08-16T22:54:49Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
マルチソースアン教師付きドメイン適応(MUDA)は、関連するソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
アクティブマルチドメイン適応(D3AAMDA)のための動的ドメイン不一致適応法(Dynamic Domain Disrepancy Adjustment)を提案する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
論文 参考訳(メタデータ) (2023-07-26T09:40:19Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Multi-path Neural Networks for On-device Multi-domain Visual
Classification [55.281139434736254]
本稿では,モバイルデバイス上でのマルチドメイン視覚分類のためのマルチパスネットワークの自動学習手法を提案する。
提案するマルチパスネットワークは,各ドメインに1つの強化学習コントローラを適用して,MobileNetV3のような検索空間から生成されたスーパーネットワークの最適経路を選択することにより,ニューラルネットワーク検索から学習する。
決定されたマルチパスモデルは、個々のドメインパス内の非共有ノード内にドメイン固有のパラメータを保持しながら、共有ノード内のドメイン間でパラメータを選択的に共有する。
論文 参考訳(メタデータ) (2020-10-10T05:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。