Sequential Attention-based Sampling for Histopathological Analysis
- URL: http://arxiv.org/abs/2507.05077v2
- Date: Wed, 09 Jul 2025 01:48:46 GMT
- Title: Sequential Attention-based Sampling for Histopathological Analysis
- Authors: Tarun G, Naman Malpani, Gugan Thoppe, Sridharan Devarajan,
- Abstract summary: SASHA is a deep reinforcement learning approach for efficient analysis of histopathology images.<n>It learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model.<n>We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs.
- Score: 2.3999111269325266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks are increasingly applied for automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering it computationally infeasible to analyze them entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches, to achieve reliable diagnosis. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features.
Related papers
- MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
We compare various strategies for predicting survival at the WSI and patient level.<n>The former treats each WSI as an independent sample, mimicking the strategy adopted in other works.<n>The latter comprises methods to either aggregate the predictions of the several WSIs or automatically identify the most relevant slide.
arXiv Detail & Related papers (2025-03-29T11:14:02Z) - From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
We develop a graph-based framework that constructs WSI graph representations.<n>We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches.<n>In our method's final step, we solve the diagnostic task through a graph attention network.
arXiv Detail & Related papers (2025-03-14T20:15:04Z) - PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis [9.862551438475666]
We propose a novel top-down method for hierarchical weakly supervised representation learning on slide-level tasks in computational pathology.<n>PATHS is inspired by the cross-magnification manner in which a human pathologist examines a slide, filtering patches at each magnification level to a small subset relevant to the diagnosis.<n>We apply PATHS to five datasets of The Cancer Genome Atlas (TCGA), and achieve superior performance on slide-level prediction tasks.
arXiv Detail & Related papers (2024-11-27T11:03:38Z) - Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images [2.6733991338938026]
Whole Slide Imaging (WSI) is a cornerstone of digital pathology, offering detailed insights critical for diagnosis and research.
Yet, the gigapixel size of WSIs imposes significant computational challenges, limiting their practical utility.
Our novel approach addresses these challenges by leveraging various encoders for intelligent data reduction and employing a different classification model to ensure robust, permutation-invariant representations of WSIs.
arXiv Detail & Related papers (2024-11-13T11:25:05Z) - Efficient Whole Slide Image Classification through Fisher Vector Representation [2.4472081831862655]
This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches.
Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors for representing features extracted from these patches.
This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable.
arXiv Detail & Related papers (2024-11-13T11:24:12Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
Digital pathology is revolutionizing the field of pathology by enabling the digitization, storage, and analysis of tissue samples as whole slide images (WSIs)
WSIs are gigapixel files that capture the intricate details of tissue samples, providing a rich source of information for diagnostic and research purposes.
Due to their enormous size, representing these images as one compact vector is essential for many computational pathology tasks.
arXiv Detail & Related papers (2024-09-06T20:56:25Z) - SPLICE -- Streamlining Digital Pathology Image Processing [0.7852714805965528]
We propose an unsupervised patching algorithm, Sequential Patching Lattice for Image Classification and Enquiry (SPLICE)
SPLICE condenses a histopathology WSI into a compact set of representative patches, forming a "collage" of WSI while minimizing redundancy.
As an unsupervised method, SPLICE effectively reduces storage requirements for representing tissue images by 50%.
arXiv Detail & Related papers (2024-04-26T21:30:36Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.