Efficient Whole Slide Image Classification through Fisher Vector Representation
- URL: http://arxiv.org/abs/2411.08530v1
- Date: Wed, 13 Nov 2024 11:24:12 GMT
- Title: Efficient Whole Slide Image Classification through Fisher Vector Representation
- Authors: Ravi Kant Gupta, Dadi Dharani, Shambhavi Shanker, Amit Sethi,
- Abstract summary: This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches.
Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors for representing features extracted from these patches.
This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable.
- Score: 2.4472081831862655
- License:
- Abstract: The advancement of digital pathology, particularly through computational analysis of whole slide images (WSI), is poised to significantly enhance diagnostic precision and efficiency. However, the large size and complexity of WSIs make it difficult to analyze and classify them using computers. This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches, thus eliminating the need to process the entire slide. Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors (FVs) for representing features extracted from these patches, which is known for its robustness in capturing fine-grained details. This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable. We have rigorously evaluated the proposed method across multiple datasets to benchmark its performance against comprehensive WSI analysis and contemporary weakly-supervised learning methodologies. The empirical results indicate that our focused analysis of select patches, combined with Fisher vector representation, not only aligns with, but at times surpasses, the classification accuracy of standard practices. Moreover, this strategy notably diminishes computational load and resource expenditure, thereby establishing an efficient and precise framework for WSI analysis in the realm of digital pathology.
Related papers
- Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images [2.6733991338938026]
Whole Slide Imaging (WSI) is a cornerstone of digital pathology, offering detailed insights critical for diagnosis and research.
Yet, the gigapixel size of WSIs imposes significant computational challenges, limiting their practical utility.
Our novel approach addresses these challenges by leveraging various encoders for intelligent data reduction and employing a different classification model to ensure robust, permutation-invariant representations of WSIs.
arXiv Detail & Related papers (2024-11-13T11:25:05Z) - A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
Digital pathology is revolutionizing the field of pathology by enabling the digitization, storage, and analysis of tissue samples as whole slide images (WSIs)
WSIs are gigapixel files that capture the intricate details of tissue samples, providing a rich source of information for diagnostic and research purposes.
Due to their enormous size, representing these images as one compact vector is essential for many computational pathology tasks.
arXiv Detail & Related papers (2024-09-06T20:56:25Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - SPLICE -- Streamlining Digital Pathology Image Processing [0.7852714805965528]
We propose an unsupervised patching algorithm, Sequential Patching Lattice for Image Classification and Enquiry (SPLICE)
SPLICE condenses a histopathology WSI into a compact set of representative patches, forming a "collage" of WSI while minimizing redundancy.
As an unsupervised method, SPLICE effectively reduces storage requirements for representing tissue images by 50%.
arXiv Detail & Related papers (2024-04-26T21:30:36Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Task-specific Fine-tuning via Variational Information Bottleneck for
Weakly-supervised Pathology Whole Slide Image Classification [10.243293283318415]
Multiple Instance Learning (MIL) has shown promising results in digital Pathology Whole Slide Image (WSI) classification.
We propose an efficient WSI fine-tuning framework motivated by the Information Bottleneck theory.
Our framework is evaluated on five pathology WSI datasets on various WSI heads.
arXiv Detail & Related papers (2023-03-15T08:41:57Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.