論文の概要: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
- arxiv url: http://arxiv.org/abs/2507.05146v1
- Date: Mon, 07 Jul 2025 15:57:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.498804
- Title: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
- Title(参考訳): VERITAS:AIシステムにおける透明性のための画像における現実性の検証と説明
- Authors: Aadi Srivastava, Vignesh Natarajkumar, Utkarsh Bheemanaboyna, Devisree Akashapu, Nagraj Gaonkar, Archit Joshi,
- Abstract要約: 我々は、小さな(32x32)画像がAI生成されているかどうかを正確に検出する包括的フレームワークVERITASを提案する。
VERITASは、合成画像のキーアーティファクトを記述する人間可読な説明を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .
- Abstract(参考訳): GAN(Generative Adversarial Networks)や拡散モデル(Diffusion Models)といったモデルによって生み出されたAI生成コンテンツの普及は、効率的で創造的なコンテンツ生成を可能にすることで、デジタルメディアの世界に革命をもたらした。
しかし、これらのモデルはまた、実際の画像とAI生成された合成画像の違いを曖昧にし、コンテンツの信頼性と完全性に関する懸念を提起する。
偽画像を検出する既存のソリューションの多くは、分類と高解像度画像にのみ焦点をあてているが、意思決定において透明性が欠如していることが多いため、画像が偽画像として分類される理由を理解することは困難である。
本稿では,小さな(32×32)画像がAI生成であるかどうかを正確に検出するだけでなく,人工的なローカライゼーションやセマンティック推論を通じて分類された理由を説明する,包括的なフレームワークであるVERITASを提案する。
VERITASは、合成画像のキーアーティファクトを記述する人間可読な説明を生成する。
このアーキテクチャは、ゼロショット合成画像検出タスクの基礎を明確に説明できる。
コードと関連するプロンプトはhttps://github.com/V-i-g-n-e-s-h-N/VERITAS にある。
関連論文リスト
- FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
本稿では,AIによる画像鑑定に適した専門家マルチモーダルモデル(LMM)であるFakeScopeを提案する。
FakeScopeはAI合成画像を高精度に識別し、リッチで解釈可能なクエリ駆動の法医学的な洞察を提供する。
FakeScopeは、クローズドエンドとオープンエンドの両方の法医学的シナリオで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-31T16:12:48Z) - DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps [0.0]
DejAIvuは、リアルタイムAI生成画像検出と唾液度に基づく説明性を組み合わせたChrome Webエクステンションである。
当社のアプローチでは、効率的なブラウザ内推論、勾配に基づく唾液度分析、シームレスなユーザエクスペリエンスを統合し、AI検出が透過的かつ解釈可能であることを保証しています。
論文 参考訳(メタデータ) (2025-02-12T22:24:49Z) - SAGI: Semantically Aligned and Uncertainty Guided AI Image Inpainting [11.216906046169683]
SAGI-DはAIが生成する塗り絵の最大かつ最も多様なデータセットである。
実験の結果,セマンティックアライメントは画像の品質と美学を著しく改善することがわかった。
SAGI-Dを使っていくつかの画像法医学的アプローチを訓練すると、ドメイン内の検出性能は平均37.4%向上する。
論文 参考訳(メタデータ) (2025-02-10T15:56:28Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images? [51.3344199560726]
信頼性の高い合成データから実際のデータを分離する手法を確立することが不可欠である。
この文書は、どの画像が本物かを検証するために使用できる検出と暗号に関する既知の戦略を提示することを目的としている。
論文 参考訳(メタデータ) (2024-07-04T22:01:21Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - PatchCraft: Exploring Texture Patch for Efficient AI-generated Image
Detection [39.820699370876916]
本稿では,多種多様な生成モデルを用いて生成した偽画像を識別できる新しいAI生成画像検出器を提案する。
グローバルな意味情報を消去し,テクスチャパッチを強化するために,新しいSmash&Reconstruction前処理を提案する。
我々のアプローチは最先端のベースラインよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-11-21T07:12:40Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。