論文の概要: Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery
- arxiv url: http://arxiv.org/abs/2406.13688v1
- Date: Wed, 19 Jun 2024 16:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 18:54:50.820781
- Title: Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery
- Title(参考訳): AI生成画像検出のためのデュアル入力ニューラルモデルの開発
- Authors: Jonathan Gallagher, William Pugsley,
- Abstract要約: AI生成画像を検出するツールを開発することが重要である。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNよりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past years, images generated by artificial intelligence have become more prevalent and more realistic. Their advent raises ethical questions relating to misinformation, artistic expression, and identity theft, among others. The crux of many of these moral questions is the difficulty in distinguishing between real and fake images. It is important to develop tools that are able to detect AI-generated images, especially when these images are too realistic-looking for the human eye to identify as fake. This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs. We use standard CNN-based methods for both branches as described in Stuchi et al. [7], followed by fully-connected layers. Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs, achieving performance comparable to some state-of-the-art architectures, such as ResNet.
- Abstract(参考訳): 過去数年間、人工知能によって生成された画像はより普及し、より現実的なものになっている。
彼らの出現は、誤情報、芸術的表現、アイデンティティ盗難などに関する倫理的な疑問を提起する。
これらの道徳的問題の多くは、実像と偽像の区別が難しいことである。
AIが生成した画像を検出できるツールを開発することが重要です。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
Stuchi や al [7] に記述されているように,両ブランチに対して標準的な CNN ベースのメソッドを使用します。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNを著しく上回り,ResNetなどの最先端アーキテクチャに匹敵する性能を実現している。
関連論文リスト
- DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps [0.0]
DejAIvuは、リアルタイムAI生成画像検出と唾液度に基づく説明性を組み合わせたChrome Webエクステンションである。
当社のアプローチでは、効率的なブラウザ内推論、勾配に基づく唾液度分析、シームレスなユーザエクスペリエンスを統合し、AI検出が透過的かつ解釈可能であることを保証しています。
論文 参考訳(メタデータ) (2025-02-12T22:24:49Z) - Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することで、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
論文 参考訳(メタデータ) (2025-01-04T06:23:24Z) - ANID: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance [19.760989919485894]
AI-Natural Image Discrepancy Evaluationベンチマークを導入し、重要な問題に対処する。
大規模マルチモーダルデータセットであるDNAI(Distinguishing Natural and AI- generated Images)データセットを構築した。
粒度評価フレームワークは,5つの重要な領域にわたるDNAIデータセットを包括的に評価する。
論文 参考訳(メタデータ) (2024-12-23T15:08:08Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
我々は、AI生成画像と実画像の識別に機械学習技術を用いる。
ResNet、VGGNet、DenseNetといった先進的なディープラーニングアーキテクチャを洗練し、適応しています。
実験結果は重要であり、最適化されたディープラーニングモデルが従来の手法より優れていることを示した。
論文 参考訳(メタデータ) (2024-01-14T20:00:37Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。