Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery
- URL: http://arxiv.org/abs/2406.13688v1
- Date: Wed, 19 Jun 2024 16:42:04 GMT
- Title: Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery
- Authors: Jonathan Gallagher, William Pugsley,
- Abstract summary: It is important to develop tools that are able to detect AI-generated images.
This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs.
Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past years, images generated by artificial intelligence have become more prevalent and more realistic. Their advent raises ethical questions relating to misinformation, artistic expression, and identity theft, among others. The crux of many of these moral questions is the difficulty in distinguishing between real and fake images. It is important to develop tools that are able to detect AI-generated images, especially when these images are too realistic-looking for the human eye to identify as fake. This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs. We use standard CNN-based methods for both branches as described in Stuchi et al. [7], followed by fully-connected layers. Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs, achieving performance comparable to some state-of-the-art architectures, such as ResNet.
Related papers
- Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI) [5.8695051911828555]
Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection.
We introduce the Visual Counter Turing Test (VCT2), a benchmark comprising 130K images generated by text-to-image models.
We also evaluate the performance of the aforementioned AGID techniques on the VCT$2$ benchmark, highlighting their ineffectiveness in detecting AI-generated
arXiv Detail & Related papers (2024-11-24T06:03:49Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We present a sanity check on whether the task of AI-generated image detection has been solved.
To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset.
We propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
We employ machine learning techniques to discern between AI-generated and genuine images.
We refine and adapt advanced deep learning architectures like ResNet, VGGNet, and DenseNet.
The experimental results were significant, demonstrating that our optimized deep learning models outperform traditional methods.
arXiv Detail & Related papers (2024-01-14T20:00:37Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
This article proposes to enhance our ability to recognise AI-generated images through computer vision.
The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI.
This study proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake.
arXiv Detail & Related papers (2023-03-24T16:33:06Z) - DA-FDFtNet: Dual Attention Fake Detection Fine-tuning Network to Detect
Various AI-Generated Fake Images [21.030153777110026]
It has been much easier to create fake images such as "Deepfakes"
Recent research has introduced few-shot learning, which uses a small amount of training data to produce fake images and videos more effectively.
In this work, we propose Dual Attention Fine-tuning Network (DA-tNet) to detect the manipulated fake face images.
arXiv Detail & Related papers (2021-12-22T16:25:24Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
We propose to improve the quality of generated images by rethinking the discriminator architecture.
The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses.
We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning.
arXiv Detail & Related papers (2021-12-09T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.