論文の概要: From Fragments to Facts: A Curriculum-Driven DPO Approach for Generating Hindi News Veracity Explanations
- arxiv url: http://arxiv.org/abs/2507.05179v1
- Date: Mon, 07 Jul 2025 16:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.519403
- Title: From Fragments to Facts: A Curriculum-Driven DPO Approach for Generating Hindi News Veracity Explanations
- Title(参考訳): フラグメントからファクトへ:Hindi News Veracity説明生成のためのカリキュラム駆動型DPOアプローチ
- Authors: Pulkit Bansal, Raghvendra Kumar, Shakti Singh, Sriparna Saha, Adam Jatowt,
- Abstract要約: 急激な誤報の時代には、特にヒンディー語のような表現不足の言語では、信頼できるニュース説明を生成することが不可欠である。
本稿では,DPO(Direct Preference Optimization)とカリキュラム学習を統合した新しいフレームワークを提案する。
LLM (Mistral, Llama, Gemma) と PLM (mBART, mT5) による実験は、コヒーレントで文脈的に関係のある説明を生成する上で、フレームワークの有効性を確認している。
- 参考スコア(独自算出の注目度): 27.17408568972408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era of rampant misinformation, generating reliable news explanations is vital, especially for under-represented languages like Hindi. Lacking robust automated tools, Hindi faces challenges in scaling misinformation detection. To bridge this gap, we propose a novel framework integrating Direct Preference Optimization (DPO) with curriculum learning to align machine-generated explanations with human reasoning. Fact-checked explanations from credible sources serve as preferred responses, while LLM outputs highlight system limitations and serve as non-preferred responses. To refine task-specific alignment, we introduce two key parameters -- Actuality and Finesse -- into the DPO loss function, enhancing explanation quality and consistency. Experiments with LLMs (Mistral, Llama, Gemma) and PLMs (mBART, mT5) confirm the framework's effectiveness in generating coherent, contextually relevant explanations. This scalable approach combats misinformation and extends automated explanation generation to low-resource languages.
- Abstract(参考訳): 急激な誤報の時代には、特にヒンディー語のような表現不足の言語では、信頼できるニュース説明を生成することが不可欠である。
堅牢な自動化ツールを欠いたHindiは、誤情報検出のスケーリングにおいて課題に直面している。
このギャップを埋めるため,直観的最適化(DPO)とカリキュラム学習を統合し,機械による説明と人間の推論を整合させる新しいフレームワークを提案する。
LLMはシステム制限のハイライトを出力し、非推奨の応答として機能する。
タスク固有のアライメントを洗練させるために、DPO損失関数に2つの重要なパラメーター、実際性とFinesseを導入し、説明品質と一貫性を向上させる。
LLM (Mistral, Llama, Gemma) と PLM (mBART, mT5) による実験は、コヒーレントで文脈的に関係のある説明を生成する上で、フレームワークの有効性を確認している。
このスケーラブルなアプローチは誤情報に対処し、低リソース言語への自動説明生成を拡張します。
関連論文リスト
- Interpreting and Steering LLMs with Mutual Information-based Explanations on Sparse Autoencoders [29.356200147371275]
大きな言語モデル(LLM)は人間のクエリを扱うのに優れていますが、時に欠陥や予期せぬ応答を生成することができます。
特徴解釈と相互情報に基づく目的設計のための固定語彙集合を提案する。
そこで本研究では,学習した機能アクティベーションを,対応する説明に基づいて調整する2つの実行時ステアリング戦略を提案する。
論文 参考訳(メタデータ) (2025-02-21T16:36:42Z) - Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) の機能強化を目的としている。
生成に使用する前に検索したチャンクを洗練するために設計された,コンパクトで効率的な,プラグ可能なモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-18T16:38:39Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Fighting Fire with Fire: Adversarial Prompting to Generate a
Misinformation Detection Dataset [10.860133543817659]
誤報を識別するために, LLM を用いた銀標準地下構造データセットの作成手法を提案する。
具体的には、信頼できるニュース記事を考えると、我々の提案するアプローチは、LLMが元の記事の要約されたバージョンを自動的に生成するように促すことである。
本データセットの有用性を検討するために,誤情報検出のタスクに対して,教師付きモデルの範囲をトレーニングする一連の実験を行った。
論文 参考訳(メタデータ) (2024-01-09T10:38:13Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
本稿では,検索した文の応答を基底にして,引用を提供することにより,大規模言語モデル(LLM)の改善に焦点を当てる。
我々は、全体論的観点から基盤を改善する新しいフレームワーク AGREE を提案する。
我々のフレームワークは, LLMを調整し, その要求を自己評価し, 検索した文書に正確な引用を提供する。
論文 参考訳(メタデータ) (2023-11-16T03:22:25Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。