Conditional Graph Neural Network for Predicting Soft Tissue Deformation and Forces
- URL: http://arxiv.org/abs/2507.05315v1
- Date: Mon, 07 Jul 2025 13:33:39 GMT
- Title: Conditional Graph Neural Network for Predicting Soft Tissue Deformation and Forces
- Authors: Madina Kojanazarova, Florentin Bieder, Robin Sandkühler, Philippe C. Cattin,
- Abstract summary: We introduce a novel data-driven model, a conditional graph neural network (cGNN) to tackle this complexity.<n>Our model takes surface points and the location of applied forces, and is specifically designed to predict the deformation of the points and the forces exerted on them.<n>We trained our model on experimentally collected surface tracking data of a soft tissue phantom and used transfer learning to overcome the data scarcity.
- Score: 0.9986418756990159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Soft tissue simulation in virtual environments is becoming increasingly important for medical applications. However, the high deformability of soft tissue poses significant challenges. Existing methods rely on segmentation, meshing and estimation of stiffness properties of tissues. In addition, the integration of haptic feedback requires precise force estimation to enable a more immersive experience. We introduce a novel data-driven model, a conditional graph neural network (cGNN) to tackle this complexity. Our model takes surface points and the location of applied forces, and is specifically designed to predict the deformation of the points and the forces exerted on them. We trained our model on experimentally collected surface tracking data of a soft tissue phantom and used transfer learning to overcome the data scarcity by initially training it with mass-spring simulations and fine-tuning it with the experimental data. This approach improves the generalisation capability of the model and enables accurate predictions of tissue deformations and corresponding interaction forces. The results demonstrate that the model can predict deformations with a distance error of 0.35$\pm$0.03 mm for deformations up to 30 mm and the force with an absolute error of 0.37$\pm$0.05 N for forces up to 7.5 N. Our data-driven approach presents a promising solution to the intricate challenge of simulating soft tissues within virtual environments. Beyond its applicability in medical simulations, this approach holds the potential to benefit various fields where realistic soft tissue simulations are required.
Related papers
- Neural-Augmented Kelvinlet: Real-Time Soft Tissue Deformation with Multiple Graspers [11.97310697947584]
We introduce a novel physics-informed neural simulator that approximates soft tissue deformations in a realistic and real-time manner.<n>Our framework integrates Kelvinlet-based priors into neural simulators, making it the first approach to leverage Kelvinlets for residual learning and regularization.
arXiv Detail & Related papers (2025-06-06T19:22:49Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Thermodynamics-informed graph neural networks for real-time simulation of digital human twins [2.6811507121199325]
This paper presents a novel methodology aimed at advancing current lines of research in soft tissue simulation.<n>The proposed approach integrates the geometric bias of graph neural networks with the physical bias derived from the imposition of a metriplectic structure.<n>Based on the adopted methodologies, we propose a model that predicts human liver responses to traction and compression loads in as little as 7.3 milliseconds.
arXiv Detail & Related papers (2024-12-16T18:01:40Z) - Graph Neural Networks for modelling breast biomechanical compression [0.08192907805418582]
Breast compression simulation is essential for accurate image registration from 3D modalities to X-ray procedures like mammography.
It accounts for tissue shape and position changes due to compression, ensuring precise alignment and improved analysis.
Finite Element Analysis (FEA) is reliable for approximating soft tissue deformation, it struggles with balancing accuracy and computational efficiency.
Recent studies have used data-driven models trained on FEA results to speed up tissue deformation predictions.
We propose to explore Physics-based Graph Neural Networks (PhysGNN) for breast compression simulation.
arXiv Detail & Related papers (2024-11-10T20:59:23Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
We propose a deep learning method for predicting displacement fields of soft tissues with viselastic properties.
The proposed method achieves a better accuracy over the conventional CNN models.
It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality.
arXiv Detail & Related papers (2023-01-11T18:17:10Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
arXiv Detail & Related papers (2020-10-28T12:43:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.