論文の概要: EmissionNet: Air Quality Pollution Forecasting for Agriculture
- arxiv url: http://arxiv.org/abs/2507.05416v1
- Date: Mon, 07 Jul 2025 18:58:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.310906
- Title: EmissionNet: Air Quality Pollution Forecasting for Agriculture
- Title(参考訳): エミッションネット:農業における大気汚染予測
- Authors: Prady Saligram, Tanvir Bhathal,
- Abstract要約: 農業排ガスからの大気汚染は、環境問題や公衆衛生問題に大きく貢献するが、しばしば見落とされがちである。
従来の空気質予測モデルは、複雑な非線形汚染物質相互作用を捉えるのに苦労する物理に基づくアプローチに依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution from agricultural emissions is a significant yet often overlooked contributor to environmental and public health challenges. Traditional air quality forecasting models rely on physics-based approaches, which struggle to capture complex, nonlinear pollutant interactions. In this work, we explore forecasting N$_2$O agricultural emissions through evaluating popular architectures, and proposing two novel deep learning architectures, EmissionNet (ENV) and EmissionNet-Transformer (ENT). These models leverage convolutional and transformer-based architectures to extract spatial-temporal dependencies from high-resolution emissions data
- Abstract(参考訳): 農業排ガスからの大気汚染は、環境問題や公衆衛生問題に大きく貢献するが、しばしば見落とされがちである。
従来の空気質予測モデルは、複雑な非線形汚染物質相互作用を捉えるのに苦労する物理に基づくアプローチに依存している。
本研究では,N$2$Oの農業用エミッションの予測について,人気アーキテクチャの評価を行い,ElectronNet(ENV)とElectronNet-Transformer(ENT)の2つの新しいディープラーニングアーキテクチャを提案する。
これらのモデルは畳み込みと変圧器に基づくアーキテクチャを利用して高分解能放射データから時空間依存を抽出する
関連論文リスト
- Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
大気質の予測は公衆衛生と環境保護において重要な役割を担っている。
既存の研究は大気の質予測において重要な役割を過小評価している。
MDSTNetは、予測のための大気汚染依存性を明示的にキャプチャするエンコーダフレームワークである。
ChinaAirNetは、大気の質記録と多気圧レベルの気象観測を組み合わせた最初のデータセットである。
論文 参考訳(メタデータ) (2025-04-14T09:18:11Z) - Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling [5.236306661644172]
伝統的な物理学に基づくモデルでは、気象学と大気汚染プロセスの結合によって地球規模の大気汚染を予測する。
既存のディープラーニング(DL)ソリューションでは,グローバル大気汚染予測にオンライン結合戦略を採用している。
本研究は,気象分野と汚染物質間のオフライン結合を実現するために,双線形プールを用いたDLベースのオフライン結合フレームワークを開拓した。
論文 参考訳(メタデータ) (2025-03-24T07:24:31Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
特に炭素フットプリントが高い大言語モデルのCO2排出量について検討した。
我々は, 二酸化炭素排出削減対策を提案することによって, 責任と持続性を有するLLMの育成を議論する。
論文 参考訳(メタデータ) (2024-04-01T15:01:45Z) - GeoFormer: A Vision and Sequence Transformer-based Approach for
Greenhouse Gas Monitoring [2.1647301294759624]
本研究では,NO2濃度を予測するために,視覚変換モジュールと高効率な時系列変換モジュールを組み合わせたコンパクトモデルを提案する。
我々は、地上監視局のSentinel-5P画像を用いて構築したデータセットを用いて、提案モデルを用いて表面レベルのNO2測定を予測する。
論文 参考訳(メタデータ) (2024-02-11T11:20:29Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Aim in Climate Change and City Pollution [0.0]
大気汚染は、環境の悪化と、それにさらされた市民の健康に重要な役割を担っている。
本章では, 大気汚染をモデル化するための手法のレビューを行い, 機械学習手法の適用に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-30T16:17:46Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
地上レベルの大気汚染の既存のモデルは、しばしば局所的に制限され、時間的に静的な土地利用データセットに依存している。
本研究は,世界規模で利用でき,頻繁に更新されるリモートセンシングデータにのみ依存する環境大気汚染の予測のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T14:58:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。