論文の概要: On the Semantics of Large Language Models
- arxiv url: http://arxiv.org/abs/2507.05448v1
- Date: Mon, 07 Jul 2025 20:02:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.331526
- Title: On the Semantics of Large Language Models
- Title(参考訳): 大規模言語モデルの意味論について
- Authors: Martin Schuele,
- Abstract要約: 大規模言語モデル(LLM)は、技術を通して人間の言語能力を再現する可能性を実証した。
これらのシステムが言語をどの程度理解しているかについては議論の余地がある。
質問を単語と文のレベルで LLM の意味論に絞り込むことで,この問題を考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) such as ChatGPT demonstrated the potential to replicate human language abilities through technology, ranging from text generation to engaging in conversations. However, it remains controversial to what extent these systems truly understand language. We examine this issue by narrowing the question down to the semantics of LLMs at the word and sentence level. By examining the inner workings of LLMs and their generated representation of language and by drawing on classical semantic theories by Frege and Russell, we get a more nuanced picture of the potential semantic capabilities of LLMs.
- Abstract(参考訳): ChatGPTのような大規模言語モデル(LLM)は、テキスト生成から会話への関与に至るまで、技術を通して人間の言語能力を再現する可能性を実証した。
しかし、これらのシステムが言語をどの程度理解しているかについては議論の余地がある。
質問を単語と文のレベルで LLM の意味論に絞り込むことで,この問題を考察する。
LLMの内部構造とそれらが生成する言語表現を調べ、FregeとRussellによる古典的意味論に基づいて、LLMの潜在的な意味的能力のより微妙な図式を得る。
関連論文リスト
- Language Surgery in Multilingual Large Language Models [32.77326546076424]
大規模言語モデル(LLM)はタスクや言語にまたがる顕著な一般化機能を示している。
本稿では, LLMにおける自然に出現する表現アライメント, 特に中層における表現アライメントについて検討する。
本稿では,言語間言語制御の高精度化と言語混乱を軽減するため,ITLC(Inference-Time Language Control)を提案する。
論文 参考訳(メタデータ) (2025-06-14T11:09:50Z) - Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis [5.029635172046762]
言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
我々は,この混乱を計測し定量化するために設計された,新しい計量であるLanguage Confusion Entropyを導入する。
論文 参考訳(メタデータ) (2024-10-17T05:43:30Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
知識ベース質問回答(KBQA)は,知識ベースにおける事実に基づいた自然言語質問への回答を目的としている。
最近の研究は、論理形式生成のための大規模言語モデル(LLM)の機能を活用して性能を向上させる。
論文 参考訳(メタデータ) (2024-01-11T09:27:50Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。