Explainable Hierarchical Deep Learning Neural Networks (Ex-HiDeNN)
- URL: http://arxiv.org/abs/2507.05498v1
- Date: Mon, 07 Jul 2025 21:43:57 GMT
- Title: Explainable Hierarchical Deep Learning Neural Networks (Ex-HiDeNN)
- Authors: Reza T. Batley, Chanwook Park, Wing Kam Liu, Sourav Saha,
- Abstract summary: The article presents a novel approach called Explainable Hierarchical Deep Learning Neural Networks or Ex-HiDeNN.<n>It uses an accurate, frugal, fast, separable, and scalable neural architecture with symbolic regression to discover closed-form expressions from limited observation.
- Score: 0.7620253522458749
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data-driven science and computation have advanced immensely to construct complex functional relationships using trainable parameters. However, efficiently discovering interpretable and accurate closed-form expressions from complex dataset remains a challenge. The article presents a novel approach called Explainable Hierarchical Deep Learning Neural Networks or Ex-HiDeNN that uses an accurate, frugal, fast, separable, and scalable neural architecture with symbolic regression to discover closed-form expressions from limited observation. The article presents the two-step Ex-HiDeNN algorithm with a separability checker embedded in it. The accuracy and efficiency of Ex-HiDeNN are tested on several benchmark problems, including discerning a dynamical system from data, and the outcomes are reported. Ex-HiDeNN generally shows outstanding approximation capability in these benchmarks, producing orders of magnitude smaller errors compared to reference data and traditional symbolic regression. Later, Ex-HiDeNN is applied to three engineering applications: a) discovering a closed-form fatigue equation, b) identification of hardness from micro-indentation test data, and c) discovering the expression for the yield surface with data. In every case, Ex-HiDeNN outperformed the reference methods used in the literature. The proposed method is built upon the foundation and published works of the authors on Hierarchical Deep Learning Neural Network (HiDeNN) and Convolutional HiDeNN. The article also provides a clear idea about the current limitations and future extensions of Ex-HiDeNN.
Related papers
- Do graph neural network states contain graph properties? [5.222978725954348]
We present a model explainability pipeline for Graph neural networks (GNNs) employing diagnostic classifiers.<n>This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets.
arXiv Detail & Related papers (2024-11-04T15:26:07Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data [12.964942755481585]
Symbolic regression is a powerful technique for discovering the underlying mathematical expressions from observed data.
Recent deep generative SR methods have shown promising results, but they face difficulties in processing high-dimensional problems.
We propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR.
arXiv Detail & Related papers (2023-09-24T17:37:45Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Efficient Decompositional Rule Extraction for Deep Neural Networks [5.69361786082969]
ECLAIRE is a novel-time rule extraction algorithm capable of scaling to both large DNN architectures and large training datasets.
We show that ECLAIRE consistently extracts more accurate and comprehensible rule sets than the current state-of-the-art methods.
arXiv Detail & Related papers (2021-11-24T16:54:10Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMS is the first deep encoder-decoder SNN architecture for the real-world large-scale problem of motion segmentation.
We show that textitSpikeMS is capable of textitincremental predictions, or predictions from smaller amounts of test data than it is trained on.
arXiv Detail & Related papers (2021-05-13T21:34:55Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Abstraction and Symbolic Execution of Deep Neural Networks with Bayesian
Approximation of Hidden Features [8.723426955657345]
We propose a novel abstraction method which abstracts a deep neural network and a dataset into a Bayesian network.
We make use of dimensionality reduction techniques to identify hidden features that have been learned by hidden layers of the DNN.
We can derive a runtime monitoring approach to detect in operational time rare inputs.
arXiv Detail & Related papers (2021-03-05T14:28:42Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
Deep Neural Networks (DNNs) are a revolutionary force in the ongoing information revolution.
DNNs are highly sensitive to noise, whether adversarial or random.
This poses a fundamental challenge for hardware implementations of DNNs, and for their deployment in critical applications such as autonomous driving.
By our approach, either the data or internal layers of the DNN are coded with error correcting codes, and successful computation under noise is guaranteed.
arXiv Detail & Related papers (2020-04-22T17:07:15Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
We introduce neural architecture disentanglement (NAD) to explain the inner workings of deep neural networks (DNNs)
NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes.
Results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones.
arXiv Detail & Related papers (2020-03-30T08:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.