Universal Long-Time Behavior of the Quantum Fisher Information in Dynamical Quantum Phase Transitions
- URL: http://arxiv.org/abs/2507.05579v1
- Date: Tue, 08 Jul 2025 01:32:39 GMT
- Title: Universal Long-Time Behavior of the Quantum Fisher Information in Dynamical Quantum Phase Transitions
- Authors: J. Mumford, R. J. Lewis-Swan,
- Abstract summary: We investigate quantum dynamical phase transitions (DQPTs) in quantum systems that possess well-defined classical limits.<n>We show that the long-time average of the quantum Fisher information (QFI) shows that it abruptly changes at the transition point.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate dynamical quantum phase transitions (DQPTs) in quantum systems that possess well-defined classical limits, focusing on the spinor Bose-Einstein condensate and the Lipkin-Meshkov-Glick model. We diagnose the DQPTs with the long-time average of the quantum Fisher information (QFI) showing that it abruptly changes at the transition point. Using mean-field and semiclassical approximations, we demonstrate that the long-time average of the QFI reveals universal behavior that persists across different systems.
Related papers
- Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Semiclassical Approach to Quantum Fisher Information [0.9217021281095907]
Quantum sensors driven into the quantum chaotic regime can have dramatically enhanced sensitivity.<n>We develop an accurate semiclassical approach that provides direct and efficient access to the phase-space-resolved quantum Fisher information (QFI)<n>This approximation reveals, in very concrete terms, that the QFI is large whenever a specific dynamical quantity tied to the sensing parameter displays a large variance over the course of the corresponding classical time evolution.
arXiv Detail & Related papers (2025-04-30T04:31:50Z) - Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Boundary Time Crystals as AC sensors: enhancements and constraints [39.58317527488534]
We find an enhanced sensitivity of the BTC when its spins are resonant with the applied AC field.<n>Despite its long coherence time and multipartite correlations, the entropic cost of the BTC hinders an optimal decoding of the AC field information.
arXiv Detail & Related papers (2024-06-10T13:53:31Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Learning in quantum games [41.67943127631515]
We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues.
We find that the FTQL dynamics incur no more than constant regret in all quantum games.
arXiv Detail & Related papers (2023-02-05T08:23:04Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Multipartite Entanglement in Crossing the Quantum Critical Point [6.24959391399729]
We investigate the multipartite entanglement for a slow quantum quench crossing a critical point.
We consider the quantum Ising model and the Lipkin-Meshkov-Glick model, which are local and full-connected quantum systems, respectively.
arXiv Detail & Related papers (2022-02-16T06:58:10Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quasiclassical approach to quantum quench dynamics in the presence of an
excited-state quantum phase transition [0.0]
Recent works have shown, using exact quantum mechanical approach, that equilibration after quantum quench exhibits specific features in the presence of excited-state quantum phase transitions.
We demonstrate that these features can be understood from the classical evolution of the Wigner function in phase space.
arXiv Detail & Related papers (2020-10-15T13:49:48Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.