Kernel Density Steering: Inference-Time Scaling via Mode Seeking for Image Restoration
- URL: http://arxiv.org/abs/2507.05604v1
- Date: Tue, 08 Jul 2025 02:33:44 GMT
- Title: Kernel Density Steering: Inference-Time Scaling via Mode Seeking for Image Restoration
- Authors: Yuyang Hu, Kangfu Mei, Mojtaba Sahraee-Ardakan, Ulugbek S. Kamilov, Peyman Milanfar, Mauricio Delbracio,
- Abstract summary: Kernel Density Steering (KDS) is a novel inference-time framework promoting robust, high-fidelity outputs through explicit local mode-seeking.<n>KDS employs an $N$-particle ensemble of diffusion samples, computing patch-wise kernel density estimation gradients from their collective outputs.<n>This collective local mode-seeking mechanism, acting as "collective wisdom", steers samples away from spurious modes prone to artifacts.
- Score: 23.098667686003928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models show promise for image restoration, but existing methods often struggle with inconsistent fidelity and undesirable artifacts. To address this, we introduce Kernel Density Steering (KDS), a novel inference-time framework promoting robust, high-fidelity outputs through explicit local mode-seeking. KDS employs an $N$-particle ensemble of diffusion samples, computing patch-wise kernel density estimation gradients from their collective outputs. These gradients steer patches in each particle towards shared, higher-density regions identified within the ensemble. This collective local mode-seeking mechanism, acting as "collective wisdom", steers samples away from spurious modes prone to artifacts, arising from independent sampling or model imperfections, and towards more robust, high-fidelity structures. This allows us to obtain better quality samples at the expense of higher compute by simultaneously sampling multiple particles. As a plug-and-play framework, KDS requires no retraining or external verifiers, seamlessly integrating with various diffusion samplers. Extensive numerical validations demonstrate KDS substantially improves both quantitative and qualitative performance on challenging real-world super-resolution and image inpainting tasks.
Related papers
- Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering [18.543769006014383]
Diffusion models often exhibit inconsistent sample quality due to variations inherent in their sampling trajectories.<n>We introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process.<n>We validate the effectiveness of CFG-Rejection in image generation through extensive experiments.
arXiv Detail & Related papers (2025-05-29T11:08:24Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Deep Clustering with Diffused Sampling and Hardness-aware
Self-distillation [4.550555443103878]
This paper proposes a novel end-to-end deep clustering method with diffused sampling and hardness-aware self-distillation (HaDis)
Results on five challenging image datasets demonstrate the superior clustering performance of our HaDis method over the state-of-the-art.
arXiv Detail & Related papers (2024-01-25T09:33:49Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
We analyze the properties of diffusion models and establish the conditions under which they can enhance certified robustness.
We propose a new method DensePure, designed to improve the certified robustness of a pretrained model (i.e. a classifier)
We show that this robust region is a union of multiple convex sets, and is potentially much larger than the robust regions identified in previous works.
arXiv Detail & Related papers (2022-11-01T08:18:07Z) - Deep Equilibrium Approaches to Diffusion Models [1.4275201654498746]
Diffusion-based generative models are extremely effective in generating high-quality images.
These models typically require long sampling chains to produce high-fidelity images.
We look at diffusion models through a different perspective, that of a (deep) equilibrium (DEQ) fixed point model.
arXiv Detail & Related papers (2022-10-23T22:02:19Z) - Accelerating Score-based Generative Models for High-Resolution Image
Synthesis [42.076244561541706]
Score-based generative models (SGMs) have recently emerged as a promising class of generative models.
In this work, we consider the acceleration of high-resolution generation with SGMs.
We introduce a novel Target Distribution Sampling Aware (TDAS) method by leveraging the structural priors in space and frequency domains.
arXiv Detail & Related papers (2022-06-08T17:41:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.