Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions
- URL: http://arxiv.org/abs/2507.05647v1
- Date: Tue, 08 Jul 2025 03:58:52 GMT
- Title: Diffusion-Based Limited-Angle CT Reconstruction under Noisy Conditions
- Authors: Jiaqi Guo, Santiago López-Tapia,
- Abstract summary: Missing angular projections lead to incomplete sinograms and artifacts in reconstructed images.<n>We propose a diffusion-based framework that completes missing angular views using a Mean-Reverting Differential Equation (MR-SDE) formulation.<n>To improve robustness under realistic noise, we propose a novel noise-aware mechanism that explicitly models inference-time uncertainty.
- Score: 10.287171164361608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited-Angle Computed Tomography (LACT) is a challenging inverse problem where missing angular projections lead to incomplete sinograms and severe artifacts in the reconstructed images. While recent learning-based methods have demonstrated effectiveness, most of them assume ideal, noise-free measurements and fail to address the impact of measurement noise. To overcome this limitation, we treat LACT as a sinogram inpainting task and propose a diffusion-based framework that completes missing angular views using a Mean-Reverting Stochastic Differential Equation (MR-SDE) formulation. To improve robustness under realistic noise, we propose RNSD$^+$, a novel noise-aware rectification mechanism that explicitly models inference-time uncertainty, enabling reliable and robust reconstruction. Extensive experiments demonstrate that our method consistently surpasses baseline models in data consistency and perceptual quality, and generalizes well across varying noise intensity and acquisition scenarios.
Related papers
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
A novel diffusion-based framework is introduced for solving inverse problems using a piecewise guidance scheme.<n>The proposed method is problem-agnostic and readily adaptable to a variety of inverse problems.<n>The framework achieves a reduction in inference time of (25%) for inpainting with both random and center masks, and (23%) and (24%) for (4times) and (8times) super-resolution tasks.
arXiv Detail & Related papers (2025-07-22T19:35:14Z) - Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
Large language models (LLMs) often produce inaccurate or misleading content-hallucinations.<n>Noise-Augmented Fine-Tuning (NoiseFiT) is a novel framework that leverages adaptive noise injection to enhance model robustness.<n>NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise.
arXiv Detail & Related papers (2025-04-04T09:27:19Z) - Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification [75.09791002021947]
Existing purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples.<n>This approach is fundamentally flawed as the uniform operation of the forward process compromises normal pixels while attempting to combat adversarial perturbations.<n>We propose a heterogeneous purification strategy grounded in the interpretability of neural networks.<n>Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise.
arXiv Detail & Related papers (2025-03-03T11:00:25Z) - Low-resolution Prior Equilibrium Network for CT Reconstruction [3.5639148953570836]
We present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the networks robustness.
Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
arXiv Detail & Related papers (2024-01-28T13:59:58Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
We introduce Convex Latent-d Adrial Regularizers (CLEAR), a novel and interpretable data-driven paradigm.
CLEAR represents a fusion of deep learning (DL) and variational regularization.
Our method consistently outperforms conventional data-driven techniques and traditional regularization approaches.
arXiv Detail & Related papers (2023-09-17T12:06:04Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
Deep denoising models require extensive real-world training data, which is challenging to acquire.<n>We propose a novel Realistic Noise Synthesis Diffusor (RNSD) method using diffusion models to address these challenges.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
Flow-based joint Image and NOise model (FINO)
We propose a novel Flow-based joint Image and NOise model (FINO) that distinctly decouples the image and noise in the latent space and losslessly reconstructs them via a series of invertible transformations.
arXiv Detail & Related papers (2021-11-11T02:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.