論文の概要: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
- arxiv url: http://arxiv.org/abs/2507.05649v1
- Date: Tue, 08 Jul 2025 04:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.557661
- Title: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
- Title(参考訳): DESIGN:サーバ側入力グラフ解析による暗号化GNN推論
- Authors: Kaixiang Zhao, Joseph Yousry Attalla, Qian Lou, Yushun Dong,
- Abstract要約: DESIGN(EncrypteD GNN Inference via sErver-Side Input Graph pruNing)は、効率的な暗号化GNN推論のための新しいフレームワークである。
当社のフレームワークは,サーバ上で完全に実行される階層的最適化戦略により,大幅なパフォーマンス向上を実現している。
- 参考スコア(独自算出の注目度): 21.652233892742366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various graph-based learning tasks. However, enabling privacy-preserving GNNs in encrypted domains, such as under Fully Homomorphic Encryption (FHE), typically incurs substantial computational overhead, rendering real-time and privacy-preserving inference impractical. In this work, we propose DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a novel framework for efficient encrypted GNN inference. DESIGN tackles the critical efficiency limitations of existing FHE GNN approaches, which often overlook input data redundancy and apply uniform computational strategies. Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server: first, FHE-compatible node importance scores (based on encrypted degree statistics) are computed from the encrypted graph. These scores then guide a homomorphic partitioning process, generating multi-level importance masks directly under FHE. This dynamically generated mask facilitates both input graph pruning (by logically removing unimportant elements) and a novel adaptive polynomial activation scheme, where activation complexity is tailored to node importance levels. Empirical evaluations demonstrate that DESIGN substantially accelerates FHE GNN inference compared to state-of-the-art methods while maintaining competitive model accuracy, presenting a robust solution for secure graph analytics.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフベースの学習タスクにおいて最先端のパフォーマンスを達成した。
しかし、FHE(Fully Homomorphic Encryption)のような暗号化ドメインでのプライバシー保護GNNの実現は、通常、かなりの計算オーバーヘッドを発生させ、リアルタイムおよびプライバシ保護推論を非現実的にレンダリングする。
本研究では,効率的なGNN推論のための新しいフレームワークであるDESIGN(EncrypteD GNN Inference via sErver-Side Input Graph pruNing)を提案する。
DESIGNは、入力データの冗長性を見落とし、一様計算戦略を適用する、既存のFHE GNNアプローチの限界に対処する。
まず、FHE互換ノード重要度スコア(暗号化次数統計に基づく)を暗号化グラフから計算する。
これらのスコアは、ホモモルフィックなパーティショニングプロセスを導出し、FHEの下で直接多レベルの重要なマスクを生成する。
この動的に生成されたマスクは、入力グラフのプルーニング(論理的に重要でない要素を除去することで)と、活性化の複雑さをノードの重要度に合わせる新しい適応多項式活性化スキームの両方を促進する。
実験的な評価では、DESIGNは競合モデルの精度を維持しながら、最先端の手法と比較してFHE GNN推論を大幅に高速化し、セキュアなグラフ解析のための堅牢なソリューションを提供する。
関連論文リスト
- OMEGA: A Low-Latency GNN Serving System for Large Graphs [8.51634655687174]
グラフニューラルネットワーク(GNN)は、グラフデータセットにおける表現ノード表現の計算能力に広く採用されている。
既存のトレーニングにおける近似技術はオーバーヘッドを軽減することができるが、サービスでは高いレイテンシと/または精度の損失につながる。
本稿では,低遅延GNNを最小限の精度でグラフに役立てるシステムであるOMEGAを提案する。
論文 参考訳(メタデータ) (2025-01-15T03:14:18Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習する。
LASEは解釈可能で、パラメータ効率が高く、未観測のエッジを持つ入力に対して堅牢である。
LASEレイヤは、Graph Convolutional Network (GCN)と完全に接続されたGraph Attention Network (GAT)モジュールを組み合わせる。
論文 参考訳(メタデータ) (2024-12-23T17:35:19Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
グラフ類似性計算(GSC)は、グラフニューラルネットワーク(GNN)を用いた学習に基づく予測タスクである。
適応正規化(AReg)と呼ばれる,シンプルながら強力な正規化技術によって,高品質な学習が達成可能であることを示す。
推論段階では、GNNエンコーダによって学習されたグラフレベル表現は、ARegを再度使用せずに直接類似度スコアを計算するために使用される。
論文 参考訳(メタデータ) (2024-06-21T07:37:28Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
グラフニューラルネットワーク(GNN)は、入力データにおけるノイズや敵攻撃に対して脆弱である。
重み付きラプラシアンGNN(RWL-GNN)として知られるGNNの強化のための汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:36:35Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。