ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
- URL: http://arxiv.org/abs/2507.06011v2
- Date: Mon, 14 Jul 2025 08:46:02 GMT
- Title: ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
- Authors: Daghash K. Alqahtani, Maria A. Rodriguez, Muhammad Aamir Cheema, Hamid Rezatofighi, Adel N. Toosi,
- Abstract summary: We propose ECORE, a framework that integrates multiple dynamic routing strategies.<n>ECORE balances energy efficiency and detection performance based on object characteristics.<n>Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 45% and 49%, respectively.
- Score: 13.57054444887393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Edge computing enables data processing closer to the source, significantly reducing latency an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies including estimation based techniques and a greedy selection algorithm to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our approach through extensive experiments on real-world datasets, comparing the proposed routers against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 45% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
Related papers
- AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
We propose a framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication.<n>A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters.<n>We show that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of samples by up to 52 percent.
arXiv Detail & Related papers (2025-02-14T14:56:58Z) - RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.<n>This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - EdgeOL: Efficient in-situ Online Learning on Edge Devices [51.86178757050963]
We propose EdgeOL, an edge online learning framework that optimize inference accuracy, fine-tuning execution time, and energy efficiency.<n> Experimental results show that, on average, EdgeOL reduces overall fine-tuning execution time by 64%, energy consumption by 52%, and improves average inference accuracy by 1.75% over the immediate online learning strategy.
arXiv Detail & Related papers (2024-01-30T02:41:05Z) - LightESD: Fully-Automated and Lightweight Anomaly Detection Framework
for Edge Computing [3.096615629099617]
Anomaly detection is widely used in a broad range of domains from cybersecurity to manufacturing, finance, and so on.
Deep learning based anomaly detection has recently drawn much attention because of its superior capability of recognizing complex data patterns and identifying outliers accurately.
We propose a fully-automated, lightweight, statistical learning based anomaly detection framework called LightESD.
arXiv Detail & Related papers (2023-05-20T18:48:41Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - FemtoDet: An Object Detection Baseline for Energy Versus Performance
Tradeoffs [27.006082622843653]
Vision applications of convolutional neural networks, such as always-on surveillance cameras, are critical for energy constraints.
This paper aims to serve as a baseline by designing detectors to reach tradeoffs between energy and performance from two perspectives.
arXiv Detail & Related papers (2023-01-17T06:24:08Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
This paper presents the first detailed experimental study of a mobile augmented reality (AR) client's energy consumption and the detection latency of executing Convolutional Neural Networks (CNN) based object detection.
Our detailed measurements refine the energy analysis of mobile AR clients and reveal several interesting perspectives regarding the energy consumption of executing CNN-based object detection.
arXiv Detail & Related papers (2020-11-26T00:32:07Z) - Particle Swarm Optimized Federated Learning For Industrial IoT and Smart
City Services [9.693848515371268]
We propose a Particle Swarm Optimization (PSO)-based technique to optimize the hyper parameter settings for the local Machine Learning models.
We evaluate the performance of our proposed technique using two case studies.
arXiv Detail & Related papers (2020-09-05T16:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.