Coding Triangle: How Does Large Language Model Understand Code?
- URL: http://arxiv.org/abs/2507.06138v1
- Date: Tue, 08 Jul 2025 16:20:43 GMT
- Title: Coding Triangle: How Does Large Language Model Understand Code?
- Authors: Taolin Zhang, Zihan Ma, Maosong Cao, Junnan Liu, Songyang Zhang, Kai Chen,
- Abstract summary: Large language models (LLMs) have achieved remarkable progress in code generation, yet their true programming competence remains underexplored.<n>We introduce the Code Triangle framework, which systematically evaluates LLMs across three fundamental dimensions: editorial analysis, code implementation, and test case generation.
- Score: 33.42334127806147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved remarkable progress in code generation, yet their true programming competence remains underexplored. We introduce the Code Triangle framework, which systematically evaluates LLMs across three fundamental dimensions: editorial analysis, code implementation, and test case generation. Through extensive experiments on competitive programming benchmarks, we reveal that while LLMs can form a self-consistent system across these dimensions, their solutions often lack the diversity and robustness of human programmers. We identify a significant distribution shift between model cognition and human expertise, with model errors tending to cluster due to training data biases and limited reasoning transfer. Our study demonstrates that incorporating human-generated editorials, solutions, and diverse test cases, as well as leveraging model mixtures, can substantially enhance both the performance and robustness of LLMs. Furthermore, we reveal both the consistency and inconsistency in the cognition of LLMs that may facilitate self-reflection and self-improvement, providing a potential direction for developing more powerful coding models.
Related papers
- Is LLM-Generated Code More Maintainable \& Reliable than Human-Written Code? [4.893345190925178]
This study compares the internal quality attributes of LLM-generated and human-written code.<n>Our analysis shows that LLM-generated code has fewer bugs and requires less effort to fix them overall.
arXiv Detail & Related papers (2025-08-01T15:17:34Z) - Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency [0.0]
We study how different programming activities compositions and training paradigms influence code generation effectiveness.<n>Our findings provide valuable insights for organizations seeking robust AI-driven coding solutions.
arXiv Detail & Related papers (2025-05-04T14:44:27Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - Large Language Models for Code Generation: The Practitioners Perspective [4.946128083535776]
Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts.<n>We propose and develop a multi-model unified platform to generate and execute code based on natural language prompts.<n>We conducted a survey with 60 software practitioners from 11 countries across four continents to evaluate the usability, performance, strengths, and limitations of each model.
arXiv Detail & Related papers (2025-01-28T14:52:16Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.<n>As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.<n>This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
Large language models (LLMs)- based code generation is a complex and powerful black-box model.
We propose a novel causal graph-based representation of the prompt and the generated code.
We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies.
arXiv Detail & Related papers (2023-10-10T14:56:26Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.