Attention-Enhanced Deep Learning Ensemble for Breast Density Classification in Mammography
- URL: http://arxiv.org/abs/2507.06410v2
- Date: Thu, 10 Jul 2025 14:19:51 GMT
- Title: Attention-Enhanced Deep Learning Ensemble for Breast Density Classification in Mammography
- Authors: Peyman Sharifian, Xiaotong Hong, Alireza Karimian, Mehdi Amini, Hossein Arabi,
- Abstract summary: This study proposes an automated deep learning system for robust binary classification of breast density.<n>We implemented and compared four advanced convolutional neural networks.<n>We developed a novel Combined Focal Label Smoothing Loss function that integrates focal loss, label smoothing, and class-balanced weighting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast density assessment is a crucial component of mammographic interpretation, with high breast density (BI-RADS categories C and D) representing both a significant risk factor for developing breast cancer and a technical challenge for tumor detection. This study proposes an automated deep learning system for robust binary classification of breast density (low: A/B vs. high: C/D) using the VinDr-Mammo dataset. We implemented and compared four advanced convolutional neural networks: ResNet18, ResNet50, EfficientNet-B0, and DenseNet121, each enhanced with channel attention mechanisms. To address the inherent class imbalance, we developed a novel Combined Focal Label Smoothing Loss function that integrates focal loss, label smoothing, and class-balanced weighting. Our preprocessing pipeline incorporated advanced techniques, including contrast-limited adaptive histogram equalization (CLAHE) and comprehensive data augmentation. The individual models were combined through an optimized ensemble voting approach, achieving superior performance (AUC: 0.963, F1-score: 0.952) compared to any single model. This system demonstrates significant potential to standardize density assessments in clinical practice, potentially improving screening efficiency and early cancer detection rates while reducing inter-observer variability among radiologists.
Related papers
- Hierarchical Corpus-View-Category Refinement for Carotid Plaque Risk Grading in Ultrasound [29.02957425057645]
We propose a novel Corpus-View-Category Refinement Framework (CVC-RF)<n>CVC-RF processes information from Corpus-, View-, and Category-levels, enhancing model performance.<n> Experimental results indicate that CVC-RF effectively models global features via multi-level refinement.
arXiv Detail & Related papers (2025-06-29T06:20:15Z) - Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images [3.0040661953201475]
We propose a novel hybrid attention-based network for lesion segmentation.<n>Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction.<n> Experiments on public datasets demonstrate that our method outperforms existing approaches.
arXiv Detail & Related papers (2025-06-19T20:32:54Z) - RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering [13.423253964156117]
RURANET++ is an unsupervised learning-based automated diagnostic system for Diabetic Macular Edema (DME)<n>During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency.<n> Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score, with exceptional clustering quality.
arXiv Detail & Related papers (2025-02-27T16:06:57Z) - DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining [1.8218878957822688]
glaucoma is a progressive optic neuropathy characterized by structural damage to the optic nerve head and functional changes in the visual field.<n>We use a generative-based framework to enhance glaucoma diagnosis, specifically addressing class imbalance through synthetic data generation.
arXiv Detail & Related papers (2024-12-04T17:39:44Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
A breast cancer image classification model algorithm combining deep learning and transfer learning is proposed.
Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0% in the test set, with a significantly improved classification accuracy compared to previous models.
arXiv Detail & Related papers (2024-04-14T12:09:47Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.