Mitigating Message Imbalance in Fraud Detection with Dual-View Graph Representation Learning
- URL: http://arxiv.org/abs/2507.06469v1
- Date: Wed, 09 Jul 2025 01:00:55 GMT
- Title: Mitigating Message Imbalance in Fraud Detection with Dual-View Graph Representation Learning
- Authors: Yudan Song, Yuecen Wei, Yuhang Lu, Qingyun Sun, Minglai Shao, Li-e Wang, Chunming Hu, Xianxian Li, Xingcheng Fu,
- Abstract summary: We propose a novel dual-view graph representation learning method to mitigate Message imbalance in Fraud Detection(MimbFD)<n> Specifically, we design a topological message reachability module for high-quality node representation learning to penetrate fraudsters' camouflage and alleviate insufficient propagation.<n>The results demonstrate that MimbFD exhibits outstanding performance in fraud detection.
- Score: 17.9157377727083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning has become a mainstream method for fraud detection due to its strong expressive power, which focuses on enhancing node representations through improved neighborhood knowledge capture. However, the focus on local interactions leads to imbalanced transmission of global topological information and increased risk of node-specific information being overwhelmed during aggregation due to the imbalance between fraud and benign nodes. In this paper, we first summarize the impact of topology and class imbalance on downstream tasks in GNN-based fraud detection, as the problem of imbalanced supervisory messages is caused by fraudsters' topological behavior obfuscation and identity feature concealment. Based on statistical validation, we propose a novel dual-view graph representation learning method to mitigate Message imbalance in Fraud Detection(MimbFD). Specifically, we design a topological message reachability module for high-quality node representation learning to penetrate fraudsters' camouflage and alleviate insufficient propagation. Then, we introduce a local confounding debiasing module to adjust node representations, enhancing the stable association between node representations and labels to balance the influence of different classes. Finally, we conducted experiments on three public fraud datasets, and the results demonstrate that MimbFD exhibits outstanding performance in fraud detection.
Related papers
- A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
We propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD.<n>In the estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD.<n>In the alignment-based fraud detection module, we develop a joint-GNN architecture with ranking loss and asymmetric alignment loss.
arXiv Detail & Related papers (2025-02-18T22:07:36Z) - CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks [13.924812479551326]
Credit card fraud poses a significant threat to the economy.<n>This paper introduces a novel method for credit card fraud detection, the textbfunderlineCausal textbfunderlineTemporal textbfunderlineGraph textbfunderlineNeural textbfNetwork (CaT-GNN)<n>CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability.
arXiv Detail & Related papers (2024-02-22T17:08:09Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
We propose a novel graph neural network called Spatial-Temporal-Aware Graph Transformer (STA-GT) for transaction fraud detection problems.
Specifically, we design a temporal encoding strategy to capture temporal dependencies and incorporate it into the graph neural network framework.
We introduce a transformer module to learn local and global information.
arXiv Detail & Related papers (2023-07-11T08:56:53Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
We argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute.
We propose a simple and effective method that uses the attention mechanism to adaptively fuse two views.
Our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.
arXiv Detail & Related papers (2022-10-22T08:21:49Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
Topology-imbalance is a graph-specific imbalance problem caused by the uneven topology positions of labeled nodes.
We propose a novel position-aware graph structure learning framework named PASTEL.
Our key insight is to enhance the connectivity of nodes within the same class for more supervision information.
arXiv Detail & Related papers (2022-08-17T14:04:21Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Improving Fraud detection via Hierarchical Attention-based Graph Neural
Network [6.7713383844867385]
Graph Neural Network (HA-GNN) for fraud detection incorporates weighted adjacency matrices across different relations against camouflage.
We generate node embeddings by aggregating information from local/long-range structures and original node features.
Experiments on three real-world datasets demonstrate the effectiveness of our model over the state-of-the-arts.
arXiv Detail & Related papers (2022-02-12T16:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.