PointVDP: Learning View-Dependent Projection by Fireworks Rays for 3D Point Cloud Segmentation
- URL: http://arxiv.org/abs/2507.06618v1
- Date: Wed, 09 Jul 2025 07:44:00 GMT
- Title: PointVDP: Learning View-Dependent Projection by Fireworks Rays for 3D Point Cloud Segmentation
- Authors: Yang Chen, Yueqi Duan, Haowen Sun, Ziwei Wang, Jiwen Lu, Yap-Peng Tan,
- Abstract summary: We propose view-dependent projection (VDP) to facilitate point cloud segmentation.<n>VDP generates data-driven projections from 3D point distributions.<n>We construct color regularization to optimize the framework.
- Score: 66.00721801098574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose view-dependent projection (VDP) to facilitate point cloud segmentation, designing efficient 3D-to-2D mapping that dynamically adapts to the spatial geometry from view variations. Existing projection-based methods leverage view-independent projection in complex scenes, relying on straight lines to generate direct rays or upward curves to reduce occlusions. However, their view independence provides projection rays that are limited to pre-defined parameters by human settings, restricting point awareness and failing to capture sufficient projection diversity across different view planes. Although multiple projections per view plane are commonly used to enhance spatial variety, the projected redundancy leads to excessive computational overhead and inefficiency in image processing. To address these limitations, we design a framework of VDP to generate data-driven projections from 3D point distributions, producing highly informative single-image inputs by predicting rays inspired by the adaptive behavior of fireworks. In addition, we construct color regularization to optimize the framework, which emphasizes essential features within semantic pixels and suppresses the non-semantic features within black pixels, thereby maximizing 2D space utilization in a projected image. As a result, our approach, PointVDP, develops lightweight projections in marginal computation costs. Experiments on S3DIS and ScanNet benchmarks show that our approach achieves competitive results, offering a resource-efficient solution for semantic understanding.
Related papers
- CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - Differentiable Registration of Images and LiDAR Point Clouds with
VoxelPoint-to-Pixel Matching [58.10418136917358]
Cross-modality registration between 2D images from cameras and 3D point clouds from LiDARs is a crucial task in computer vision and robotic training.
Previous methods estimate 2D-3D correspondences by matching point and pixel patterns learned by neural networks.
We learn a structured cross-modality matching solver to represent 3D features via a different latent pixel space.
arXiv Detail & Related papers (2023-12-07T05:46:10Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
We present a novel differentiable point-based rendering framework to achieve photo-realistic relighting.
The proposed framework showcases the potential to revolutionize the mesh-based graphics pipeline with a point-based pipeline enabling editing, tracing, and relighting.
arXiv Detail & Related papers (2023-11-27T18:07:58Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
This paper focuses on leveraging geometry information, such as depth, to model such feature transformation.
We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view.
We then aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame.
arXiv Detail & Related papers (2023-07-09T06:07:22Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
arXiv Detail & Related papers (2023-04-20T04:05:22Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
We propose a novel two-stage framework for the efficient 3D point cloud object detection.
We parse the raw point cloud data directly in the 3D space yet achieve impressive efficiency and accuracy.
We highlight our KITTI 3D object detection dataset with 75 FPS and on Open dataset with 25 FPS inference speed with satisfactory accuracy.
arXiv Detail & Related papers (2021-07-27T10:07:39Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
This paper introduces a novel approach for 3D point cloud semantic segmentation that exploits multiple projections of the point cloud.
Our Multi-Projection Fusion framework analyzes spherical and bird's-eye view projections using two separate highly-efficient 2D fully convolutional models.
arXiv Detail & Related papers (2020-11-03T19:40:43Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.